洛谷 P3884 [JLOI2009]二叉树问题
题目
思路
深搜统计深度,倍增\(\text{LCA}\)求边数
\(Code\)
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<algorithm>
#define MAXN 100
#define max_(a,b) a>b?a:b;
using namespace std;
int n,cnt,head[MAXN],dep[MAXN],fa[MAXN][20],lg[MAXN];
int sum1,sum2,ans1,ans2[MAXN];
struct Edge{
int next,to;
}edge[MAXN<<1];
inline int qpow(int a,int b){
int ans=1,base=a;
while(b){
if(b&1) ans*=base;
base*=base;
b>>=1;
}
return ans;
}
inline void addedge(int from,int to){
edge[++cnt].to=to,edge[cnt].next=head[from];
head[from]=cnt;
}
inline int read(){
int x=0;bool f=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=!f;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return f?-x:x;
}
void dfs(int u,int father){
dep[u]=dep[father]+1;
ans2[dep[u]]++;
ans1=max_(ans1,dep[u]);
fa[u][0]=father;
for(int i=head[u];i;i=edge[i].next){
int x=edge[i].to;
if(x!=father) dfs(x,u);
}
}
void lca(int x,int y){
if(dep[x]<dep[y]){
while(dep[y]>dep[x]){
sum2+=qpow(2,lg[dep[y]-dep[x]]-1);
y=fa[y][lg[dep[y]-dep[x]]-1];
}
}else{
while(dep[x]>dep[y]){
sum1+=qpow(2,lg[dep[x]-dep[y]]-1);
x=fa[x][lg[dep[x]-dep[y]]-1];
}
}
if(x==y) return;
for(int k=lg[dep[x]]-1;k>=0;--k){
if(fa[x][k]!=fa[y][k]){
sum1+=qpow(2,k),sum2+=qpow(2,k);
x=fa[x][k],y=fa[y][k];
}
}
sum1++,sum2++;
}
int main(){
n=read();
for(int i=1,u,v;i<n;++i){
u=read(),v=read();
addedge(u,v);
addedge(v,u);
}
dfs(1,0);
for(int i=1;(1<<i)<=n;++i){
for(int j=1;j<=n;++j){
fa[j][i]=fa[fa[j][i-1]][i-1];
}
}
for(int i=1;i<=n;++i){
lg[i]=lg[i-1]+(1<<lg[i-1]==i);
}
int ans=0;
for(int i=1;i<MAXN;++i){
if(ans2[i]>ans){
ans=ans2[i];
}
}
int u,v;
u=read(),v=read();
printf("%d\n%d\n",ans1,ans);
lca(u,v);
printf("%d\n",sum1*2+sum2);
return 0;
}
洛谷 P3884 [JLOI2009]二叉树问题的更多相关文章
- 【洛谷P3884 [JLOI2009]】二叉树问题
题目描述 如下图所示的一棵二叉树的深度.宽度及结点间距离分别为: 深度:4 宽度:4(同一层最多结点个数) 结点间距离: ⑧→⑥为8 (3×2+2=8) ⑥→⑦为3 (1×2+1=3) 注:结点间距离 ...
- [洛谷P1040] 加分二叉树
洛谷题目链接:加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di ...
- 题解【洛谷P3884】[JLOI2009]二叉树问题
题面 题解 这道题目可以用很多方法解决,这里我使用的是树链剖分. 关于树链剖分,可以看一下我的树链剖分学习笔记. 大致思路是这样的: 第\(1\)次\(dfs\)记录出每个点的父亲.重儿子.深度.子树 ...
- 洛谷P3884 二叉树问题
题目描述 如下图所示的一棵二叉树的深度.宽度及结点间距离分别为: 深度:\(4\) 宽度:\(4\)(同一层最多结点个数) 结点间距离: \(⑧→⑥为8 (3×2+2=8)\) \(⑥→⑦为3 (1× ...
- 洛谷 P1305 新二叉树 Label:字符串的输出总是有惊喜
题目描述 输入一串完全二叉树,用遍历前序打出. 输入输出格式 输入格式: 第一行为二叉树的节点数n. 后面n行,每一个字母为节点,后两个字母分别为其左右儿子. 空节点用*表示 输出格式: 前序排列的完 ...
- 洛谷 P1040 加分二叉树
题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...
- 洛谷 P1305 新二叉树
P1305 新二叉树 题目描述 输入一串完全二叉树,用遍历前序打出. 输入输出格式 输入格式: 第一行为二叉树的节点数n. 后面n行,每一个字母为节点,后两个字母分别为其左右儿子. 空节点用*表示 输 ...
- 洛谷P1040 加分二叉树(树形dp)
加分二叉树 时间限制: 1 Sec 内存限制: 125 MB提交: 11 解决: 7 题目描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n ...
- 洛谷P1040 加分二叉树【记忆化搜索】
题目链接:https://www.luogu.org/problemnew/show/P1040 题意: 某一个二叉树的中序遍历是1~n,每个节点有一个分数(正整数). 二叉树的分数是左子树分数乘右子 ...
随机推荐
- WPF 判断一个对象是否是设计时的窗口类型,而不是运行时的窗口
原文:WPF 判断一个对象是否是设计时的窗口类型,而不是运行时的窗口 当我们对 Window 类型写一个附加属性的时候,在属性变更通知中我们需要判断依赖对象是否是一个窗口.但是,如果直接判断是否是 W ...
- 1.将控制器添加到 ASP.NET Core MVC 应用
模型-视图-控制器 (MVC) 体系结构模式将应用分成 3 个主要组件:模型 (M).视图 (V) 和控制器 (C). 模型(M):表示应用数据的类. 模型类使用验证逻辑来对该数据强制实施业务规则. ...
- angular复习笔记1-开篇
前言 学习和使用angular已经有一段时间了.这段时间利用angular做了一个系统,算是对angular有了一个全面的认识,趁着现在有一些时间,把angular的一些知识记录一下. 安装angul ...
- JAVA案例练习: 去除ArrayList中重复的字符串(字符串内容相同),去除重复的对象
package com.yqw.list; import java.util.ArrayList;import java.util.Iterator; public class Demo_ArrayL ...
- JavaScript原型链以及Object,Function之间的关系
JavaScript里任何东西都是对象,任何一个对象内部都有另一个对象叫__proto__,即原型,它可以包含任何东西让对象继承.当然__proto__本身也是一个对象,它自己也有自己的__proto ...
- Node.js到底是什么
接触前端也有一段时间了,逐渐开始接触Node.js,刚刚接触Node.js的时候一直都以为Node.js就是JavaScript,当对Node.js有一定的了解之后,其实并不然两者之间有关系,其中的关 ...
- CRC-CCITT CRC-16
CRC分为以下几种标准: CRC-12码 CRC-16码 CRC-CCITT码 CRC-32码 在线CRC计算器 https://www.lammertbies.nl/comm/info/crc-ca ...
- Linux内核:关于中断你需要知道的
1.中断处理程序与其他内核函数真正的区别在于,中断处理程序是被内核调用来相应中断的,而它们运行于中断上下文(原子上下文)中,在该上下文中执行的代码不可阻塞.中断就是由硬件打断操作系统. 2.异常与中断 ...
- 关于header file、static、inline、variable hides的一点感想
前言 先看一段代码 #ifndef _INLINE_H #define _INLINE_H template<typename T> static inline T my_max(T a, ...
- 微信小程序中,如果没有参数,如何设置默认参数?
现在学会小程序,这方面的知识,需要积累. 现在的情况是这样: 如果想从后端获取产品列表,而这些列表是可以根据分类来获取的,也是可以获取所有产品的. 那么,为了不使小程序报错,那么,我们就可以将不传的参 ...