【LOJ2292】[THUSC2016]成绩单(区间DP)
题目
分析
比较神奇的一个区间 DP ,我看了很多题解都没看懂,大约是我比较菜罢。
先明确一下题意:abcde 取完 c 后变成 abde ,可以取 bd 这样取 c 后新增的连续段。因此这题需要区间 DP。
能发现取一段区间的代价只与这段区间的最大值和最小值有关。那么用 \(f_{i,j,l,r}\) 表示将区间 \([i,j]\) 取到只剩下值在 \([l,r]\) 中的数的最小代价,\(g_{i,j}\) 表示取完区间 \([i,j]\) 的最小代价,则 \(g_{1,n}\) 就是答案。
考虑怎么转移。对于一段区间而言,取区间末尾的那个数不会创造出新的连续段,也就是说不存在一步必须要取完末尾的数才能取到。因此末尾的数一定可以最后一步再取。那么大力枚举末尾的数是和前面多少个数一起取的,就有转移:
\]
此外,如果末尾的数在 \([l,r]\) 中,那么也可以不取。此时有转移:
\]
\(g\) 的转移就是枚举取最后一步时剩下的最大值和最小值,然后加上取这一次的代价。即:
\]
其中 \(m\) 是权值的最大值。
离散化后时间复杂度 \(O(n^5)\) 。
代码
#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
namespace zyt
{
const int N = 55, INF = 0x3f3f3f3f;
int n, a, b, f[N][N][N][N], g[N][N], arr[N], tmp[N];
int sq(const int x)
{
return x * x;
}
int work()
{
memset(f, INF, sizeof(f));
memset(g, INF, sizeof(g));
scanf("%d%d%d", &n, &a, &b);
for (int i = 1; i <= n; i++)
scanf("%d", &arr[i]), tmp[i] = arr[i];
sort(tmp + 1, tmp + n + 1);
int cnt = unique(tmp + 1, tmp + n + 1) - tmp - 1;
for (int i = 1; i <= n; i++)
arr[i] = lower_bound(tmp + 1, tmp + cnt + 1, arr[i]) - tmp;
for (int i = 1; i <= n; i++)
memset(f[i][i - 1], 0, sizeof(f[i][i - 1]));
for (int len = 1; len <= n; len++)
for (int i = 1; i + len - 1 <= n; i++)
{
int j = i + len - 1;
for (int l = 1; l <= cnt; l++)
for (int r = l; r <= cnt; r++)
{
if (l <= arr[j] && arr[j] <= r)
f[i][j][l][r] = min(f[i][j][l][r], f[i][j - 1][l][r]);
for (int k = i + 1; k <= j; k++)
f[i][j][l][r] = min(f[i][j][l][r], f[i][k - 1][l][r] + g[k][j]);
}
for (int l = 1; l <= cnt; l++)
for (int r = l; r <= cnt; r++)
g[i][j] = min(g[i][j], f[i][j][l][r] + a + b * sq(tmp[r] - tmp[l]));
}
printf("%d", g[1][n]);
return 0;
}
}
int main()
{
return zyt::work();
}
【LOJ2292】[THUSC2016]成绩单(区间DP)的更多相关文章
- [THUSC2016]成绩单 [区间dp]
简单区间dp. 考虑 \(f_{i,j,mn,mx}\)表示 \(i,j\) 区间的最大值为 \(mx\),最小值为 \(mn\) 的最小花费,\(g_{i,j}\) 为删掉 \([i,j]\) 的最 ...
- 【bzoj4897】[Thu Summer Camp2016]成绩单 区间dp
题目描述 给你一个数列,每次你可以选择连续的一段,付出 $a+b\times 极差^2$ 的代价将其删去,剩余部分拼到一起成为新的数列继续进行此操作.求将原序列全部删去需要的最小总代价是多少. 输入 ...
- BZOJ.4897.[Thu Summer Camp2016]成绩单(区间DP)
BZOJ 显然是个区间DP.令\(f[l][r]\)表示全部消掉区间\([l,r]\)的最小花费. 因为是可以通过删掉若干子串来删子序列的,所以并不好直接转移.而花费只与最大最小值有关,所以再令\(g ...
- LOJ 2292 「THUSC 2016」成绩单——区间DP
题目:https://loj.ac/problem/2292 直接 DP 很难做,主要是有那种 “一个区间内部有很多个别的区间” 的情况. 自己想了一番枚举 max-min 的最大限制,然后在该基础上 ...
- [LOJ2292] [THUSC2016] 成绩单
题目链接 LOJ:https://loj.ac/problem/2292 洛谷:https://www.luogu.org/problemnew/show/P5336 Solution 区间\(\rm ...
- BZOJ4897 THUSC2016成绩单(区间dp)
拿走一个区间的代价只与最大最小值有关,并且如果最后一次拿走包含区间右端点的子序列一定不会使答案更劣,于是设f[i][j][x][y]为使i~j区间剩余最小值为x最大值为y且若有数剩余一定包含j的最小代 ...
- [BZOJ4897][THUSC2016]成绩单(DP)
4897: [Thu Summer Camp2016]成绩单 Time Limit: 40 Sec Memory Limit: 512 MBSubmit: 220 Solved: 132[Subm ...
- 【题解】【THUSC 2016】成绩单 LOJ 2292 区间dp
Prelude 快THUWC了,所以补一下以前的题. 真的是一道神题啊,网上的题解没几篇,而且还都看不懂,我做了一天才做出来. 传送到LOJ:(>人<:) Solution 直接切入正题. ...
- 区间dp提升复习
区间\(dp\)提升复习 不得不说这波题真的不简单... 技巧总结: 1.有时候转移可以利用背包累和 2.如果遇到类似区间添加限制的题可以直接把限制扔在区间上,每次只考虑\([l,r]\)被\([i, ...
随机推荐
- kafka中的offset概念
在 Kafka 中无论是 producer 往 topic 中写数据, 还是 consumer 从 topic 中读数据, 都避免不了和 offset 打交道, 关于 offset 主要有以下几个概念 ...
- 链表 | 判断链表B是否为链表A的连续子序列
王道P38T16 代码: bool common_subSequence(LinkList &A,LinkList &B){ LNode *pA,*pB=B->next,*p=A ...
- 【转】Impala 中的 Invalidate Metadata 和 Refresh
前言Impala采用了比较奇葩的多个impalad同时提供服务的方式,并且它会由catalogd缓存全部元数据,再通过statestored完成每一次的元数据的更新到impalad节点上,Impala ...
- LCA的几种做法
P3379 LCA $ 1:$蜗牛爬式 void dfs(int u,int fa) { f[u]=fa;//预处理father for(int i=head[u]; i; i=e[i].nxt) i ...
- <每日 1 OJ> -内存文件系统
蛮有意思的,主要考查链表和树结构的知识. 代码如下: ************************************************************************* ...
- java定时任务框架Quartz入门与Demo搭建
- ssh scp 上传下载文件
scp username@servername:/path/filename 例如scp codinglog@192.168.0.101:/home/kimi/test.txt 把192.168. ...
- vue路由的异步加载(懒加载)方法
vue路由的异步加载(懒加载)方法. javascriptvue.jsvue-router 阅读约 2 分钟 vue本身不多介绍.直接说问题,因为vue的所有路由都是加载在一个app.js里的,如果 ...
- vue npm run dev 报错 semver\semver.js:312 throw new TypeError('Invalid Version: ' + version)
npm run dev运行报错信息如下图: 原因分析: 版本问题 解决办法: 在semver.js(node_modules/semver/semver.js)里做了一些改动,代码如下: // if ...
- essay sundry
感觉很多单词, 即使是所谓的抽象名词都有复数形式,是习惯用法,比如, details, comments, ads等 ad: 广告, advertise的缩写? advertise. advertis ...