【题目大意】

给出 n个物品,价值为别为Xi且各不相同,现在可以取1个、2个或3个,问每种价值和有几种情况?

*顺序不同算一种

【思路】

显然是个母函数,A表示每种物品取一个的情况,B表示每种物品取二个的情况,C表示每种物品取三个的情况。用指数表示价值,系数表示该价值的个数,显然多项式相乘后指数会相加,系数会相乘,很容易就求出来了。

所以对于每种物品价值Xi,A[xi]++,B[2*xi]++,C[3*xi]++。

如果取1个物品,答案就是A。

如果取2个物品,A^2中有重复的(xi,xi)的情况,所以答案为A^2-B。

如果去3个物品,A^3中可能有(xi,xi,xi)(xi,xi,yi)(xi,yi,xi)(yi,xi,xi)这几种重复的情况,而A*B能够求出所有形容(xi,xi,xi)和(xi,yi,yi)的情况数。(xi,xi,yi)(xi,yi,xi)(yi,xi,xi)总的情况数=(xi,yi,yi)*3,而A*B*3又会多减去了两次(xi,xi,xi),所以要用C加回来。所以答案为A^3-3*B*A+2C。又由于顺序不同算一种情况,因为每种物品价值都不一样,情况(2)/2,情况(3)/6。

故总情况数量=++

(公式好烦啊把默认编辑器换成Markdown算了)

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<complex>
#include<cmath>
#define pi acos(-1)
using namespace std;
typedef complex<double> com;
typedef long long ll;
const int MAXN=+;
com a[MAXN],b[MAXN],c[MAXN];
int m,n,len,L,Rev[MAXN];
void get_bit(){for (n=,L=;n<m;n<<=) L++;}
void get_Rtable(){for (int i=;i<n;i++) Rev[i]=(Rev[i>>]>>)|((i&)<<(L-));} void FFT(com* a,int flag)
{
for (int i=;i<n;i++)if(i<Rev[i])swap(a[i],a[Rev[i]]); //利用逆序表,快速求逆序
for (int i=;i<n;i<<=)
{
com wn(cos(*pi/(i*)),flag*sin(*pi/(i*)));
for (int j=;j<n;j+=(i<<))
{
com w(,);
for (int k=;k<i;k++,w*=wn)
{
com x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y;
a[j+k+i]=x-y;
}
}
}
if (flag==-) for (int i=;i<n;i++) a[i]/=n;
} void init()
{
scanf("%d",&n);
for (int i=;i<n;i++)
{
int ai;
scanf("%d",&ai);
a[ai]+=();b[*ai]+=();c[*ai]+=();
len=max(len,*ai);
}
} void solve()
{
m=len<<;
len++;m++;
get_bit();
get_Rtable();
FFT(a,);
FFT(b,);
FFT(c,);
com t2=(),t3=(),t6=();
for (int i=;i<n;i++)
a[i]=(a[i]*a[i]*a[i]-t3*a[i]*b[i]+t2*c[i])/t6+(a[i]*a[i]-b[i])/t2+a[i];
FFT(a,-);
} void get_ans()
{
for (int i=;i<m;i++)
{
ll num=(ll)(a[i].real()+0.5);
if (num!=) printf("%d %d\n",i,num);
}
} int main()
{
init();
solve();
get_ans();
return ;
}

【FFT(母函数)+容斥】BZOJ3771-Triple的更多相关文章

  1. bzoj 3771 Triple FFT 生成函数+容斥

    Triple Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 847  Solved: 482[Submit][Status][Discuss] Desc ...

  2. bzoj3771: Triple(容斥+生成函数+FFT)

    传送门 咳咳忘了容斥了-- 设\(A(x)\)为斧头的生成函数,其中第\(x^i\)项的系数为价值为\(i\)的斧头个数,那么\(A(x)+A^2(x)+A^3(x)\)就是答案(于是信心满满的打了一 ...

  3. 【BZOJ 3771】 3771: Triple (FFT+容斥)

    3771: Triple Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 547  Solved: 307 Description 我们讲一个悲伤的故事. ...

  4. spoj TSUM - Triple Sums fft+容斥

    题目链接 首先忽略 i < j < k这个条件.那么我们构造多项式$$A(x) = \sum_{1现在我们考虑容斥:1. $ (\sum_{}x)^3 = \sum_{}x^3 + 3\s ...

  5. BZOJ 3771: Triple(FFT+容斥)

    题面 Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: "这把斧头,是不是你的?" 樵夫一看:&qu ...

  6. HDU 4609 3-idiots FFT+容斥

    一点吐槽:我看网上很多分析,都是在分析这个题的时候,讲了半天的FFT,其实我感觉更多的把FFT当工具用就好了 分析:这个题如果数据小,统计两个相加为 x 的个数这一步骤(这个步骤其实就是求卷积啊),完 ...

  7. UVa12633 Super Rooks on Chessboard(容斥 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...

  8. UOJ#449. 【集训队作业2018】喂鸽子 min-max容斥,FFT

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ449.html 题解 设 f(i) 表示给 i 只鸽子喂食使得至少一只鸽子被喂饱的期望次数,先 min-max容斥 一下. ...

  9. 【LOJ2541】【PKUWC2018】猎人杀(容斥,FFT)

    [LOJ2541][PKUWC2018]猎人杀(容斥,FFT) 题面 LOJ 题解 这题好神仙啊. 直接考虑概率很麻烦,因为分母总是在变化. 但是,如果一个人死亡之后,我们不让他离场,假装给他打一个标 ...

  10. HDU 6397 组合数学+容斥 母函数

    Character Encoding Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Oth ...

随机推荐

  1. 换行符 \r \n \r\n 在不同系统下的区别

    '\r'是回车,前者使光标到行首,(carriage return)'\n'是换行,后者使光标下移一格,(line feed)\r 是回车,return\n 是换行,newline对于换行这个动作,u ...

  2. linux内存占用查看

    查看内存使用情况 free free -m //显示单位为:兆 查看占用内存最高的5个进程ps aux | sort -k4nr | head -n 5 查看占用CPU最高的5个进程ps aux |  ...

  3. [New learn]讲解Objective-c的block知识

    1.简介 OC的Block感觉就是C中饿函数指针,提供回调功能,但是OC中的block比C的函数指针要更加强大,甚至可以访问本地变量和修改本地变量. block在oc中是一个对象,它可以像一般的对象那 ...

  4. Winfrom窗体间传值

    1.通过tag属性传输,tag属性是存储与空间密切相关的数据.比如登陆界面的数据传输给主界面. 子窗体                                                 ...

  5. Git——Git常用命令速查表

  6. 几条学习python的建议

    熟悉python语言, 以及学会python的编码方式. 熟悉python库, 遇到开发任务的时候知道如何去找对应的模块. 知道如何查找和获取第三方的python库, 以应付开发任务. 学习步骤 安装 ...

  7. 深入解析当下大热的前后端分离组件django-rest_framework系列三

    三剑客之认证.权限与频率组件 认证组件 局部视图认证 在app01.service.auth.py: class Authentication(BaseAuthentication): def aut ...

  8. Go语言标准库之log包

    用来作日志log输出的, 比较易懂. 今天周六啊,在公司加班学习一下呀. package main import ( "log" ) func init() { log.SetPr ...

  9. 【JBPM4】获取任务

    示例代码: <?xml version="1.0" encoding="UTF-8"?> <process name="test&q ...

  10. AC日记——【模板】点分治(聪聪可可) 洛谷 P2634

    [模板]点分治(聪聪可可) 思路: 点分治: (感谢灯神) 代码: #include <bits/stdc++.h> using namespace std; #define maxn 2 ...