【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=2242

【题目大意】

  给出T和K
  对于K=1,计算 Y^Z Mod P 的值
  对于K=2,计算满足 xy≡ Z ( mod P ) 的最小非负整数
  对于K=3,计算满足 Y^x ≡ Z ( mod P) 的最小非负整数

【题解】

  K=1情况快速幂即可

  K=2情况用exgcd求解

  K=3用BSGS求解

【代码】

#include <cstdio>
#include <cmath>
#include <map>
#include <algorithm>
#include <tr1/unordered_map>
using namespace std::tr1;
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
int phi(int n){
int t=1,i;
for(i=2;i*i<=n;i++)if(n%i==0)for(n/=i,t*=i-1;n%i==0;n/=i,t*=i);
if(n>1)t*=n-1;
return t;
}
int pow(ll a,int b,int m){ll t=1;for(;b;b>>=1,a=a*a%m)if(b&1)t=t*a%m;return t;}
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int exgcd(int a,int b,int&x,int&y){
if(!b)return x=1,y=0,a;
int d=exgcd(b,a%b,x,y),t=x;
return x=y,y=t-a/b*y,d;
}
int bsgs(int a,int r,int m){
if(r>=m)return -1;
int i,g,x,c=0,at=int(2+sqrt(m));
for(i=0,x=1%m;i<50;i++,x=ll(x)*a%m)if(x==r)return i;
for(g=x=1;__gcd(int(ll(x)*a%m),m)!=g;c++)g=__gcd(x=ll(x)*a%m,m);
if(r%g)return -1;
if(x==r)return c;
unordered_map<int,int>u;
g=phi(m/g),u[x]=0;g=pow(a,g-at%g,m);
for(i=1;i<at;i++){
u.insert(P(x=ll(x)*a%m,i));
if(x==r)return c+i;
}
for(i=1;i<at;i++){
unordered_map<int,int>::iterator t=u.find(r=ll(r)*g%m);
if(t!=u.end())return c+i*at+t->second;
}return -1;
}
// 计算 Y^Z Mod P 的值
void solve1(ll y,int z,int p){printf("%d\n",pow(y,z,p));}
// 计算满足 xy≡ Z ( mod P ) 的最小非负整数
void solve2(int y,int z,int p){
p=-p;
int t=gcd(y,p);
if(z%t){puts("Orz, I cannot find x!");return;}
y/=t;z/=t;p/=t;
int a,b;exgcd(y,p,a,b);
a=(ll)a*z%p;
while(a<0)a+=p;
printf("%d\n",a);
}
// 计算满足 Y^x ≡ Z ( mod P) 的最小非负整数
void solve3(int y,int z,int p){
y%=p; z%=p;
int t=bsgs(y,z,p);
if(t==-1){puts("Orz, I cannot find x!");return;}
else printf("%d\n",t);
}
int main(){
int T,k,y,z,p;
while(~scanf("%d%d",&T,&k)){
while(T--){
scanf("%d%d%d",&y,&z,&p);
if(k==1)solve1(y,z,p);
if(k==2)solve2(y,z,p);
if(k==3)solve3(y,z,p);
}
}return 0;
}

BZOJ 2242 [SDOI2011]计算器(快速幂+Exgcd+BSGS)的更多相关文章

  1. BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )

    没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...

  2. BZOJ 2242: [SDOI2011]计算器 [快速幂 BSGS]

    2242: [SDOI2011]计算器 题意:求\(a^b \mod p,\ ax \equiv b \mod p,\ a^x \equiv b \mod p\),p是质数 这种裸题我竟然WA了好多次 ...

  3. bzoj 2242 [SDOI2011]计算器 快速幂+扩展欧几里得+BSGS

    1:快速幂  2:exgcd  3:exbsgs,题里说是素数,但我打的普通bsgs就wa,exbsgs就A了...... (map就是慢)..... #include<cstdio> # ...

  4. 【BZOJ2242】【SDoi2011】计算器 快速幂+EXGCD+BSGS

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  5. bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...

  6. BZOJ 2242 [SDOI2011]计算器 ——EXGCD/快速幂/BSGS

    三合一的题目. exgcd不解释,快速幂不解释. BSGS采用了一种不用写EXGCD的方法,写起来感觉好了很多. 比较坑,没给BSGS的样例(LAJI) #include <map> #i ...

  7. bzoj 2242: [SDOI2011]计算器【扩展欧几里得+快速幂+BSGS】

    第一问快速幂板子 第二问把式子转化为\( xy\equiv Z(mod P)\rightarrow xy+bP=z \),然后扩展欧几里得 第三问BSGS板子 #include<iostream ...

  8. BZOJ 2242 [SDOI2011]计算器 BSGS+高速幂+EXGCD

    题意:id=2242">链接 方法: BSGS+高速幂+EXGCD 解析: BSGS- 题解同上.. 代码: #include <cmath> #include <c ...

  9. BZOJ.2242.[SDOI2011]计算器(扩展欧几里得 BSGS)

    同余方程都不会写了..还一直爆int /* 2.关于同余方程ax ≡b(mod p),可以用Exgcd做,但注意到p为质数,y一定有逆元 首先a%p=0时 仅当b=0时有解:然后有x ≡b*a^-1( ...

随机推荐

  1. 2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络赛 H. Skiing (拓扑排序+假dp)

    题目链接:https://nanti.jisuanke.com/t/16957 题目: In this winter holiday, Bob has a plan for skiing at the ...

  2. 大聊Python-----网络编程

    什么是Socket? socket本质上就是在2台网络互通的电脑之间,架设一个通道,两台电脑通过这个通道来实现数据的互相传递. 我们知道网络 通信 都 是基于 ip+port 方能定位到目标的具体机器 ...

  3. 在电脑中配置adb

    在环境变量的系统变量path中添加SDK中platform_tools和tools的路径 如果出现version说明配置成功

  4. servlet线程不安全

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAlgAAAE9CAIAAABY1Yv/AAAgAElEQVR4nOy9eVxN2/8/viuaU5kqZW

  5. 数字签名算法rsa

    数字签名算法消息传递模型 由消息发送方构建密钥对,这里由甲方完成. 由消息发送方公布公钥至消息接收方,这里由甲方将公钥公布给乙方. 注意如加密算法区别,这里甲方使用私钥对数据签名,数据与签名形成一则消 ...

  6. Vue-$emit的用法

    1.父组件可以使用 props 把数据传给子组件.2.子组件可以使用 $emit 触发父组件的自定义事件. vm.$emit( event, arg ) //触发当前实例上的事件 vm.$on( ev ...

  7. 原始套接字&&数据链路层访问

    1. 原始套接字能力: (1) 进程可以读写ICMP,IGMP等分组,如ping程序: (2) 进程可以读写内核不处理协议字段的ipv4数据报:如OSPF等: (3) 进程可以使用IP_HDRINCL ...

  8. Linux内核基础--事件通知链(notifier chain)【转】

    转自:http://blog.csdn.net/wuhzossibility/article/details/8079025 内核通知链 1.1. 概述 Linux内核中各个子系统相互依赖,当其中某个 ...

  9. 2017多校第7场 HDU 6129 Just do it 找规律

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6129 题意:求a序列后m次xor前缀和 解法: 手动对1位置对每个位置的贡献打表发现 第一次 贡献为 ...

  10. 网站服务器压力Web性能测试(4):服务器压力Web性能测试小结

    1.Apache Bench,Webbench,http_load对网站压力Web性能进行测试时,为了得到更加客观和准确的数值,应该从远程访问.局域网访问和本地等多个方面进行全方位的测试.一般用127 ...