4017: 小Q的无敌异或

Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 593  Solved: 197
[Submit][Status][Discuss]

Description

背景
 
小Q学习位运算时发现了异或的秘密。
 
描述
 
小Q是一个热爱学习的人,他经常去维基百科(http://en.wikipedia.org/wiki/Main_Page)学习计算机科学。
 
就在刚才,小Q认真地学习了一系列位运算符(http://en.wikipedia.org/wiki/Bitwise_operation),其中按位异或的运算符 xor 对他影响很大。按位异或的运算符是双目运算符。按位异或具有交换律,即i xor j = j xor i。
 
他发现,按位异或可以理解成被运算的数字的二进制位对应位如果相同,则结果的该位置为0,否则为1,例如1(01) xor 2(10) = 3(11)。
 
他还发现,按位异或可以理解成数字的每个二进制位进行了不进位的加法,例如3(11) xor 3(11) = 0(00)。
 
于是他想到了两个关于异或的问题,这两个问题基于一个给定的非负整数序列A1, A2, ..., An,其中n是该序列的长度。
 
第一个问题是,如果用f(i, j)表示Ai xor Ai+1 xor ... xor Aj,则任意的1 <= i <= j <= n的f(i, j)相加是多少。
 
第二个问题是,如果用g(i, j)表示Ai + Ai+1 + ... + Aj,则任意的1 <= i <= j <= n的g(i, j)异或在一起是多少。
 
比如说,对于序列{1, 2},所有的f是{1, 2, 1 xor 2},加起来是6;所有的g是{1, 2, 1 + 2},异或起来是0。
 
他觉得这两个问题都非常的有趣,所以他找到了你,希望你能快速解决这两个问题,其中第一个问题的答案可能很大,你只需要输出它对998244353(一个质数)取模的值即可。
 

Input

第一行一个正整数n,表示序列的长度。
 
第二行n个非负整数A1, A2, ..., An,表示这个序列。
 

Output

两个整数,表示两个问题的答案,空格隔开,其中第一个问题的答案要对998244353(一个质数)取模。
 

Sample Input

2
1 2

Sample Output

6 0
 

此题求解该序列所有可能存在的子区间的异或和以及和的异或。
对于第一问求解区间的异或和。这一问在2017西安现场赛G题出现过,只不过把整个区间改为询问指定的区间。那么我们把每个数拆开,一位一位地来算贡献。在某一位上,我们做一个异或的前缀和,即把+换为^。那我们要求解某个区间[l,r]的异或值,即为sum(r)^sum(l-1)。包含0位置在内共有n+1个端点。我们统计下这个前缀和为1的端点数有k个,那么为0的就有(n+1-k)个,那么区间俩端点必须由不同数组成异或才为1(即sum(r)和sum(l-1)),这样的区间我们能选择k*(n+1-k),这即为第一问答案。
对于第二问。我们依旧拆开一位一位做。假如这是第k位,我们做%(2k+1)的前缀和。
如果第k位为1 ,那么(sum(r)−sum(l−1))mod 2k+1≥2k,这点显而易见。
用ans存这位是否为1,。我们从小到大枚举r,看满足这个等式的l-1是否为奇数个,如果是则ans^=1,否则不管。
但这东西不拆开来是不好做的。这个式子拆开 mod前的数并变换可以得出两个式子来限定sum(l-1)%(2k+1)的取值范围:
  1. sum(l−1)mod 2k+1≤(sum(r)mod2k+1)−2,0≤sum(l−1)mod2k+1 ,即 0≤sum(l−1)mod2k+1≤(sum(r)mod2k+1)−2k
  2. sum(l−1)mod2k+1≤(sum(r)mod2k+1)−2k+2k+1=(sum(r)mod2k+1)+2,sum(r)mod2k+1<sum(l−1)mod2k+1 ,即 sum(r)mod2k+1<sum(l−1)mod2k+1≤(sum(r)mod2k+1)+2

我们先离散化所有前缀和的值。在枚举r的过程中,然后看对应区间内的数量是不是奇数个,这个可以用^的树状数组实现。或者权值线段树实现。

这样枚举了右端点后,就能得出ans,若为1则加上相应的2的幂次方作为答案贡献。

 #include<bits/stdc++.h>
#define clr(x) memset(x,0,sizeof(x))
#define clr_1(x) memset(x,-1,sizeof(x))
#define LL long long
#define mod 998244353
using namespace std;
const int N=1e5+;
int bit[N];
LL a[N];
LL order[N],found[N];
int n,m,k,cnt;
LL ans1,ans2;
void qy1(int mp)
{
LL num=;
LL now=;
for(int i=;i<=n;i++)
{
now^=(a[i]>>mp)&;
if(now)
num++;
}
ans1=(ans1+num*(n-num+)%mod*(1LL<<mp)%mod)%mod;
return ;
}
void add(int i,int x)
{
if(!i) return ;
while(i<=cnt+)
{
bit[i]^=x;
i+= i&-i;
}
return ;
}
int sum(int i)
{
int res=;
while(i)
{
res^=bit[i];
i-= i&-i;
}
return res;
}
void qy2(int mp)
{
clr(bit);
int p;
found[]=order[]=;
for(int i=;i<=n;i++)
{
found[i]=(found[i-]+a[i])%(1LL<<(mp+));
order[i]=found[i];
}
sort(order,order+n+);
cnt=unique(order,order+n+)-order-;
int ans=;
for(int i=;i<=n;i++)
{
p=lower_bound(order,order+cnt+,found[i])-order;
if(order[p]!=found[i]) p--;
p++;
add(p,);
ans^=sum(p);
p=lower_bound(order,order+cnt+,found[i]-(1LL<<mp))-order;
if(order[p]!=found[i]-(1LL<<mp)) p--;
p++;
ans^=sum(p);
p=lower_bound(order,order+cnt+,found[i]+(1LL<<mp))-order;
if(p==cnt+ || order[p]!=found[i]+(1LL<<mp)) p--;
p++;
ans^=sum(p);
}
if(ans) ans2|=(1LL<<mp);
return ;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%lld",&a[i]);
ans1=ans2=;
for(int i=;i<=;i++) qy1(i);
for(int i=;i<=;i++) qy2(i);
printf("%lld %lld\n",ans1,ans2);
return ;
}

bzoj 4017: 小Q的无敌异或的更多相关文章

  1. BZOJ 4017 小 Q 的无敌异或 ( 树状数组、区间异或和、区间异或和之和、按位计贡献思想 )

    题目链接 题意 : 中文题 分析 : 首先引入两篇写的很好的题解 题解一.题解二 听说这种和异或相关区间求和的问题都尽量按位考虑 首先第一问.按二进制位计贡献的话.那么对于第 k 位而言 其贡献 = ...

  2. BZOJ4017 小Q的无敌异或(位运算)

    题目链接 小Q的无敌异或 好久之前做的这道题了……参照了别人的博客……还是没有全懂. 第一个问题维护个前缀就好了,第二个问题还要用树状数组维护…… #include <bits/stdc++.h ...

  3. bzoj 4815 小Q的表格 —— 反演+分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 思路就和这里一样:https://blog.csdn.net/leolyun/arti ...

  4. BZOJ [Cqoi2017] 小Q的棋盘

    题解:枚举最后在哪里停止,然后剩下的步数/2 也就是找最大深度 枚举终止位置算是一种思路吧 #include<iostream> #include<cstdio> #inclu ...

  5. bzoj 4813: [Cqoi2017]小Q的棋盘

    Description 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能 在有连线的格点之间移动.整个棋盘上共有V个格点,编号为0,1,2-,V- ...

  6. bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]

    4813: [Cqoi2017]小Q的棋盘 题意: 某poj弱化版?树形背包 据说还可以贪心... #include <iostream> #include <cstdio> ...

  7. bzoj 4815: [Cqoi2017]小Q的表格 [数论]

    4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...

  8. 【BZOJ 5125】小Q的书架

    Problem Description 小 \(Q\) 有 \(n\) 本书,每本书有一个独一无二的编号,现在它们正零乱地在地上排成了一排. 小 \(Q\) 希望把这一排书分成恰好 \(k\) 段,使 ...

  9. 腾讯笔试题:小Q硬币组合

    腾讯有一道机试题: 大概意思是: 小Q非常富有,拥有非常多的硬币,小Q的拥有的硬币是有规律的,对于所有的非负整数K,小Q恰好> 各有两个数值为2^k,的硬币,所以小Q拥有的硬币是1,1,2,2, ...

随机推荐

  1. python基础===self的理解

    self是类的实例 self有点类似java中的this,无实际意义.但是约定俗成的都是用self表示类的实例 class A: def func(self): print(self) #指向的是类的 ...

  2. Android 开发之避免被第三方使用代理抓包

    现象:charles抓不到包,但wireshark,HttpAnalyzor可以抓到包. 关键代码: URL url = new URL(urlStr); urlConnection = (HttpU ...

  3. 【Educational Codeforces Round20】

    这场edu有点简单…… 所以题目可能也有点奇奇怪怪的. A.随意构造一下,可以发现只有当填满都不行时才可能无解. #include<bits/stdc++.h> using namespa ...

  4. Filecoin:一种去中心化的存储网络(二)

    开始初步了解学习Filecoin,如下是看白皮书的内容整理. 参考: 白皮书中文版 http://chainx.org/paper/index/index/id/13.html 白皮书英文版 http ...

  5. C高级 跨平台协程库

    1.0 协程库引言 协程对于上层语言还是比较常见的. 例如C# 中 yield retrun, lua 中 coroutine.yield 等来构建同步并发的程序. 本文就是探讨如何从底层实现开发级别 ...

  6. JS常用操作方法

    1.splice() 方法向/从数组中添加/删除项目,然后返回被删除的项目. 注释:该方法会改变原始数组. 1 <script type="text/javascript"& ...

  7. 20180104 wdcp中的mysql重启不成功

    1.重启不成功是由于/www/wdlinux/mysql-5.5.54/data 中的ib_logfile0.ib_logfile1 和ibdata1的文件存在,可用netstat -lnpt查看当前 ...

  8. javascript 实现图片放大镜功能

    淘宝上经常用到的一个功能是利用图片的放大镜功能来查看商品的细节 下面我们来实现这样一个功能吧,原理很简单: 实现一个可以随鼠标移动的虚框 在另外一个块中对应显示虚框中的内容 实现思路: 虚框用css中 ...

  9. java虚拟机字节码执行引擎

    定义 java虚拟机字节码执行引擎是jvm最核心的组成部分之一,它做的事情很简单:输入的是字节码文件,处理过程是字节码解析的等效过程,输出的是执行结果.在不同的虚拟机实现里,执行引擎在执行java代码 ...

  10. Linked List Cycle I&&II——快慢指针(II还没有完全理解)

    Linked List Cycle I Given a linked list, determine if it has a cycle in it. Follow up: Can you solve ...