HAWQ取代传统数仓实践(十)——维度表技术之杂项维度
一、什么是杂项维度
简单地说,杂项维度就是一种包含的数据具有很少可能值的维度。事务型商业过程通常产生一系列混杂的、低基数的标志位或状态信息。与其为每个标志或属性定义不同的维度,不如建立单独的将不同维度合并到一起的杂项维度。这些维度,通常在一个模式中标记为事务型概要维度,一般不需要所有属性可能值的笛卡尔积,但应该至少包含实际发生在源数据中的组合值。
例如,在销售订单中,可能存在有很多离散数据(yes-no这种开关类型的值),如:
- verification_ind(如果订单已经被审核,值为yes)
- credit_check_flag(表示此订单的客户信用状态是否已经被检查)
- new_customer_ind(如果这是新客户的首个订单,值为yes)
- web_order_flag(表示一个订单是在线上订单还是线下订单)
这类数据常被用于增强销售分析,其特点是属性可能很多但每种属性的可能值却很少。
二、处理杂项维度的常用方法
在建模复杂的操作型源系统时,经常会遭遇大量五花八门的标志或状态信息,它们包含小范围的离散值。处理这些较低基数的标志或状态位通常可以采用以下几种方法。
1. 忽略这些标志和指标
姑且将这种回避问题的处理方式也算作方法之一吧。在开发ETL系统时,ETL开发小组可以向业务用户询问有关忽略这些标志的必要问题,如果它们是微不足道的。但是这样的方案通常立即就被否决了,因为有人偶尔还需要它们。
2. 保持事实表行中的标志位不变
还以销售订单为例,和源数据库一样,我们可以在事实表中也建立这四个标志位字段。在装载事实表时,除了订单号以外,同时装载这四个字段的数据,这些字段没有对应的维度表,而是作为订单的属性保留在事实表中。
这种处理方法简单直接,装载程不需要做大量的修改,也不需要建立相关的维度表。但是一般我们不希望在事实表中存储难以识别的标志位,尤其是当每个标志位还配有一个文字描述字段时。不要在事实表行中存储包含大量字符的描述符,因为每一行都会有文字描述,它们可能会使表快速地膨胀。在行中保留一些文本标志是令人反感的,比较好的做法是分离出单独的维度表保存这些标志位字段的数据,它们的数据量很小,并且极少改变。事实表通过维度表的代理键引用这些标志。
3. 将每个标志位放入其自己的维度中
例如,为销售订单的四个标志位分别建立四个对应的维度表。在装载事实表数据前先处理这四个维度表,必要时生成新的代理键,然后在事实表中引用这些代理键。这种方法是将杂项维度当做普通维度来处理,多数情况下这也是不合适的。
首先,当类似的标志或状态位字段比较多时,需要建立很多的维度表,其次事实表的外键数也会大量增加。处理这些新增的维度表和外键需要大量修改数据装载脚本,还会增加出错的机会,同时会给ETL的开发、维护、测试过程带来很大的工作量。最后,杂项维度的数据有自己明显的特点,即属性多但每个属性的值少,并且极少修改,这种特点决定了它应该与普通维度的处理区分开。
作为一个经验值,如果外键的数量处于合理的范围中,即不超过20个,则在事实表中增加不同的外键是可以接受的。但是,若外键列表已经很长,则应该避免将更多的外键加入到事实表中。
4. 将标志位字段存储到订单维度中
可以将标志位字段添加到订单维度表中。上一篇我们将订单维度表作为退化维度删除了,因为它除了订单号,没有其它任何属性。与其将订单号当成是退化维度,不如视其为将低基数标志或状态作为属性的普通维度。事实表通过引用订单维度表的代理键,关联到所有的标志位信息。
尽管该方法精确地表示了数据关系,但依然存在前面讨论的问题。在订单维度表中,每条业务订单都会存在对应的一条销售订单记录,该维度表的记录数会膨胀到跟事实表一样多,而在如此多的数据中,每个标志位字段都存在大量的冗余。通常维度表应该比事实表小得多。
5. 使用杂项维度
处理这些标志位的适当替换方法是将它们包装为一个杂项维度,其中放置各种离散的标志或状态数据。
对杂项维度数据量的估算会影响其建模策略。如果某个简单的杂项维度包含10个二值标识,则最多将包含1024(2^10)行。杂项维度可提供所有标识的组合,并用于基于这些标识的约束和报表。事实表与杂项维度之间存在一个单一的、小型的代理键。
另一方面,如果具有高度非关联的属性,包含更多的数量值,则将它们合并为单一的杂项维度是不合适的。如果存在5个标识,每个仅包含3个值,则单一杂项维度是这些属性的最佳选择,因为维度最多仅有243(3^5)行。但是如果5个没有关联的标识,每个具有100个可能值,建议建立不同维度,因为单一杂项维度表最大可能存在1亿(100^5)行。
关于杂项维度的一个微妙的问题是,在杂项维度中行的组合确定并已知的前提下,是应该事先为所有组合的完全笛卡尔积建立行,还是建立杂项维度行,只用于保存那些在源系统中出现的组合情况的数据。答案要看大概有多少可能的组合,最大行数是多少。一般来说,理论上组合的数量较小,比如只有几百行时,可以预装载所有组合的数据,而组合的数量大,那么在数据获取时,当遇到新标志或指标时再建立杂项维度行。当然,如果源数据中用到了全体组合时,那别无选择只能预先装载好全部杂项维度数据。
三、新增销售订单属性杂项维度
图1显示了增加杂项维度表后的数据仓库模式。
给现有的数据仓库新增一个销售订单属性杂项维度。需要新增一个名为sales_order_attribute_dim的杂项维度表,该表包括四个yes-no列:verification_ind、credit_check_flag、new_customer_ind和web_order_flag,各列的含义已经在本篇开头说明。每个列可以有两个可能值中的一个,Y 或 N,因此sales_order_attribute_dim表最多有16(2^4)行。假设这16行已经包含了所有可能的组合,并且不考虑杂项维度修改的情况,则可以预装载这个维度,并且只需装载一次。
执行下面的脚本修改数据库结构。这个脚本做了工作:
- 给源数据库里的sales_order表增加对应的四个属性列。
- 重建外部表,增加杂项属性。
- 给销售订单原始数据存储表增加杂项属性。
- 建立sales_order_attribute_dim表。
- 向表中预装载全部16种可能的数据。
- 给销售订单事实表添加杂项维度代理键字段。
-- 给源库的销售订单表增加对应的属性
use source;
alter table sales_order
add verification_ind char (1) after product_code,
add credit_check_flag char (1) after verification_ind,
add new_customer_ind char (1) after credit_check_flag,
add web_order_flag char (1) after new_customer_ind ;
-- 重建外部表,增加杂项属性,列的顺序必须和源表一致
set search_path=ext;
drop external table sales_order;
create external table sales_order
(
order_number int,
customer_number int,
product_code int,
verification_ind char(1),
credit_check_flag char(1),
new_customer_ind char(1),
web_order_flag char(1),
order_date timestamp,
request_delivery_date timestamp,
entry_date timestamp,
order_amount decimal(10 , 2 ),
order_quantity int
)
location ('pxf://mycluster/data/ext/sales_order?profile=hdfstextsimple')
format 'text' (delimiter=e',', null='null');
comment on table sales_order is '销售订单外部表';
comment on column sales_order.order_number is '订单号';
comment on column sales_order.customer_number is '客户编号';
comment on column sales_order.product_code is '产品编码';
comment on column sales_order.verification_ind is '审核标志';
comment on column sales_order.credit_check_flag is '信用检查标志';
comment on column sales_order.new_customer_ind is '客户首个订单标志';
comment on column sales_order.web_order_flag is '线上订单标志';
comment on column sales_order.order_date is '订单日期';
comment on column sales_order.request_delivery_date is '请求交付日期';
comment on column sales_order.entry_date is '登记日期';
comment on column sales_order.order_amount is '销售金额';
comment on column sales_order.order_quantity is '销售数量';
-- 给销售订单过渡表增加对应的属性
set search_path=rds;
alter table sales_order add column verification_ind char(1) default null;
alter table sales_order add column credit_check_flag char(1) default null;
alter table sales_order add column new_customer_ind char(1) default null;
alter table sales_order add column web_order_flag char(1) default null;
comment on column sales_order.verification_ind is '审核标志';
comment on column sales_order.credit_check_flag is '信用检查标志';
comment on column sales_order.new_customer_ind is '客户首个订单标志';
comment on column sales_order.web_order_flag is '线上订单标志';
set search_path=tds;
-- 建立杂项维度表
create table sales_order_attribute_dim (
sales_order_attribute_sk int,
verification_ind char(1),
credit_check_flag char(1),
new_customer_ind char(1),
web_order_flag char(1)
);
comment on table sales_order_attribute_dim is '杂项维度表';
comment on column sales_order_attribute_dim.sales_order_attribute_sk is '杂项维度代理键';
comment on column sales_order_attribute_dim.verification_ind is '审核标志';
comment on column sales_order_attribute_dim.credit_check_flag is '信用检查标志';
comment on column sales_order_attribute_dim.new_customer_ind is '客户首个订单标志';
comment on column sales_order_attribute_dim.web_order_flag is '线上订单标志';
-- 生成杂项维度数据,共插入16条记录
insert into sales_order_attribute_dim values (1, 'n', 'n', 'n', 'n');
insert into sales_order_attribute_dim values (2, 'n', 'n', 'n', 'y');
insert into sales_order_attribute_dim values (3, 'n', 'n', 'y', 'n');
insert into sales_order_attribute_dim values (4, 'n', 'n', 'y', 'y');
insert into sales_order_attribute_dim values (5, 'n', 'y', 'n', 'n');
insert into sales_order_attribute_dim values (6, 'n', 'y', 'n', 'y');
insert into sales_order_attribute_dim values (7, 'n', 'y', 'y', 'n');
insert into sales_order_attribute_dim values (8, 'n', 'y', 'y', 'y');
insert into sales_order_attribute_dim values (9, 'y', 'n', 'n', 'n');
insert into sales_order_attribute_dim values (10, 'y', 'n', 'n', 'y');
insert into sales_order_attribute_dim values (11, 'y', 'n', 'y', 'n');
insert into sales_order_attribute_dim values (12, 'y', 'n', 'y', 'y');
insert into sales_order_attribute_dim values (13, 'y', 'y', 'n', 'n');
insert into sales_order_attribute_dim values (14, 'y', 'y', 'n', 'y');
insert into sales_order_attribute_dim values (15, 'y', 'y', 'y', 'n');
insert into sales_order_attribute_dim values (16, 'y', 'y', 'y', 'y');
-- 建立杂项维度外键
alter table sales_order_fact add column sales_order_attribute_sk int default null;
comment on column sales_order_fact.sales_order_attribute_sk is '杂项维度代理键';
四、修改定期数据装载函数
由于有了一个新的维度,必须修改定期数据装载函数。下面显示了修改后的fn_regular_load函数。
create or replace function fn_regular_load ()
returns void as
$$
declare
-- 设置scd的生效时间
v_cur_date date := current_date;
v_pre_date date := current_date - 1;
v_last_load date;
begin
-- 分析外部表
analyze ext.customer;
analyze ext.product;
analyze ext.sales_order;
-- 将外部表数据装载到原始数据表
truncate table rds.customer;
truncate table rds.product;
insert into rds.customer select * from ext.customer;
insert into rds.product select * from ext.product;
insert into rds.sales_order
select order_number,
customer_number,
product_code,
order_date,
entry_date,
order_amount,
order_quantity,
request_delivery_date,
verification_ind,
credit_check_flag,
new_customer_ind,
web_order_flag
from ext.sales_order;
-- 分析rds模式的表
analyze rds.customer;
analyze rds.product;
analyze rds.sales_order;
-- 设置cdc的上限时间
select last_load into v_last_load from rds.cdc_time;
truncate table rds.cdc_time;
insert into rds.cdc_time select v_last_load, v_cur_date;
-- 装载客户维度
insert into tds.customer_dim
(customer_number,
customer_name,
customer_street_address,
customer_zip_code,
customer_city,
customer_state,
shipping_address,
shipping_zip_code,
shipping_city,
shipping_state,
isdelete,
version,
effective_date)
select case flag
when 'D' then a_customer_number
else b_customer_number
end customer_number,
case flag
when 'D' then a_customer_name
else b_customer_name
end customer_name,
case flag
when 'D' then a_customer_street_address
else b_customer_street_address
end customer_street_address,
case flag
when 'D' then a_customer_zip_code
else b_customer_zip_code
end customer_zip_code,
case flag
when 'D' then a_customer_city
else b_customer_city
end customer_city,
case flag
when 'D' then a_customer_state
else b_customer_state
end customer_state,
case flag
when 'D' then a_shipping_address
else b_shipping_address
end shipping_address,
case flag
when 'D' then a_shipping_zip_code
else b_shipping_zip_code
end shipping_zip_code,
case flag
when 'D' then a_shipping_city
else b_shipping_city
end shipping_city,
case flag
when 'D' then a_shipping_state
else b_shipping_state
end shipping_state,
case flag
when 'D' then true
else false
end isdelete,
case flag
when 'D' then a_version
when 'I' then 1
else a_version + 1
end v,
v_pre_date
from (select a.customer_number a_customer_number,
a.customer_name a_customer_name,
a.customer_street_address a_customer_street_address,
a.customer_zip_code a_customer_zip_code,
a.customer_city a_customer_city,
a.customer_state a_customer_state,
a.shipping_address a_shipping_address,
a.shipping_zip_code a_shipping_zip_code,
a.shipping_city a_shipping_city,
a.shipping_state a_shipping_state,
a.version a_version,
b.customer_number b_customer_number,
b.customer_name b_customer_name,
b.customer_street_address b_customer_street_address,
b.customer_zip_code b_customer_zip_code,
b.customer_city b_customer_city,
b.customer_state b_customer_state,
b.shipping_address b_shipping_address,
b.shipping_zip_code b_shipping_zip_code,
b.shipping_city b_shipping_city,
b.shipping_state b_shipping_state,
case when a.customer_number is null then 'I'
when b.customer_number is null then 'D'
else 'U'
end flag
from v_customer_dim_latest a
full join rds.customer b on a.customer_number = b.customer_number
where a.customer_number is null -- 新增
or b.customer_number is null -- 删除
or (a.customer_number = b.customer_number
and not
(coalesce(a.customer_name,'') = coalesce(b.customer_name,'')
and coalesce(a.customer_street_address,'') = coalesce(b.customer_street_address,'')
and coalesce(a.customer_zip_code,0) = coalesce(b.customer_zip_code,0)
and coalesce(a.customer_city,'') = coalesce(b.customer_city,'')
and coalesce(a.customer_state,'') = coalesce(b.customer_state,'')
and coalesce(a.shipping_address,'') = coalesce(b.shipping_address,'')
and coalesce(a.shipping_zip_code,0) = coalesce(b.shipping_zip_code,0)
and coalesce(a.shipping_city,'') = coalesce(b.shipping_city,'')
and coalesce(a.shipping_state,'') = coalesce(b.shipping_state,'')
))) t
order by coalesce(a_customer_number, 999999999999), b_customer_number limit 999999999999;
-- 重载PA客户维度
truncate table pa_customer_dim;
insert into pa_customer_dim
select customer_sk,
customer_number,
customer_name,
customer_street_address,
customer_zip_code,
customer_city,
customer_state,
isdelete,
version,
effective_date,
shipping_address,
shipping_zip_code,
shipping_city,
shipping_state
from customer_dim
where customer_state = 'pa';
-- 装载产品维度
insert into tds.product_dim
(product_code,
product_name,
product_category,
isdelete,
version,
effective_date)
select case flag
when 'D' then a_product_code
else b_product_code
end product_code,
case flag
when 'D' then a_product_name
else b_product_name
end product_name,
case flag
when 'D' then a_product_category
else b_product_category
end product_category,
case flag
when 'D' then true
else false
end isdelete,
case flag
when 'D' then a_version
when 'I' then 1
else a_version + 1
end v,
v_pre_date
from (select a.product_code a_product_code,
a.product_name a_product_name,
a.product_category a_product_category,
a.version a_version,
b.product_code b_product_code,
b.product_name b_product_name,
b.product_category b_product_category,
case when a.product_code is null then 'I'
when b.product_code is null then 'D'
else 'U'
end flag
from v_product_dim_latest a
full join rds.product b on a.product_code = b.product_code
where a.product_code is null -- 新增
or b.product_code is null -- 删除
or (a.product_code = b.product_code
and not
(a.product_name = b.product_name
and a.product_category = b.product_category))) t
order by coalesce(a_product_code, 999999999999), b_product_code limit 999999999999;
-- 装载销售订单事实表
insert into sales_order_fact
select a.order_number,
customer_sk,
product_sk,
e.date_sk,
e.year * 100 + e.month,
order_amount,
order_quantity,
f.date_sk,
g.sales_order_attribute_sk
from rds.sales_order a,
v_customer_dim_his c,
v_product_dim_his d,
date_dim e,
date_dim f,
sales_order_attribute_dim g,
rds.cdc_time h
where a.customer_number = c.customer_number
and a.order_date >= c.effective_date
and a.order_date < c.expiry_date
and a.product_code = d.product_code
and a.order_date >= d.effective_date
and a.order_date < d.expiry_date
and date(a.order_date) = e.date
and date(a.request_delivery_date) = f.date
and a.verification_ind = g.verification_ind
and a.credit_check_flag = g.credit_check_flag
and a.new_customer_ind = g.new_customer_ind
and a.web_order_flag = g.web_order_flag
and a.entry_date >= h.last_load and a.entry_date < h.current_load;
-- 分析tds模式的表
analyze customer_dim;
analyze product_dim;
analyze sales_order_fact;
-- 更新时间戳表的last_load字段
truncate table rds.cdc_time;
insert into rds.cdc_time select v_cur_date, v_cur_date;
end;
$$
language plpgsql;
函数做了以下两点修改:
- 装载rds.sales_order时增加了四个杂项属性。
- 装载事实表时,关联了sales_order_attribute_dim维度表,为事实表中装载杂项维度代理键。
注意,杂项属性维度数据已经预装载,所以在定期装载脚本中只需要修改处理事实表的部分。源数据中有四个属性列,而事实表中只对应一列,因此需要使用四列关联条件的组合确定杂项维度表的代理键值,并装载到事实表中。
五、测试
1. 准备测试数据
使用下面的脚本添加八个销售订单。
use source;
drop table if exists temp_sales_order_data;
create table temp_sales_order_data as select * from sales_order where 1=0;
set @start_date := unix_timestamp(date_add(current_date, interval -1 day));
set @end_date := unix_timestamp(current_date);
set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date));
set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400);
set @amount := floor(1000 + rand() * 9000);
set @quantity := floor(10 + rand() * 90);
insert into temp_sales_order_data
values (1, 1, 1, 'y', 'y', 'n', 'y', @order_date, @request_delivery_date, @order_date, @amount, @quantity);
set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date));
set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400);
set @amount := floor(1000 + rand() * 9000);
set @quantity := floor(10 + rand() * 90);
insert into temp_sales_order_data
values (2, 2, 2, 'n', 'n', 'n', 'n', @order_date, @request_delivery_date, @order_date, @amount, @quantity);
set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date));
set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400);
set @amount := floor(1000 + rand() * 9000);
set @quantity := floor(10 + rand() * 90);
insert into temp_sales_order_data
values (3, 3, 3, 'y', 'y', 'n', 'n', @order_date, @request_delivery_date, @order_date, @amount, @quantity);
set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date));
set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400);
set @amount := floor(1000 + rand() * 9000);
set @quantity := floor(10 + rand() * 90);
insert into temp_sales_order_data
values (4, 4, 4, 'y', 'n', 'n', 'n', @order_date, @request_delivery_date, @order_date, @amount, @quantity);
set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date));
set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400);
set @amount := floor(1000 + rand() * 9000);
set @quantity := floor(10 + rand() * 90);
insert into temp_sales_order_data
values (5, 11, 1, 'n', 'y', 'y', 'y', @order_date, @request_delivery_date, @order_date, @amount, @quantity);
set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date));
set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400);
set @amount := floor(1000 + rand() * 9000);
set @quantity := floor(10 + rand() * 90);
insert into temp_sales_order_data
values (6, 12, 2, 'n', 'y', 'y', 'n', @order_date, @request_delivery_date, @order_date, @amount, @quantity);
set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date));
set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400);
set @amount := floor(1000 + rand() * 9000);
set @quantity := floor(10 + rand() * 90);
insert into temp_sales_order_data
values (7, 13, 3, 'y', 'y', 'y', 'n', @order_date, @request_delivery_date, @order_date, @amount, @quantity);
set @order_date := from_unixtime(@start_date + rand() * (@end_date - @start_date));
set @request_delivery_date := from_unixtime(unix_timestamp(date_add(current_date, interval 5 day)) + rand() * 86400);
set @amount := floor(1000 + rand() * 9000);
set @quantity := floor(10 + rand() * 90);
insert into temp_sales_order_data
values (8, 14, 4, 'y', 'n', 'y', 'n', @order_date, @request_delivery_date, @order_date, @amount, @quantity);
insert into sales_order
select null,
customer_number,
product_code,
verification_ind,
credit_check_flag,
new_customer_ind,
web_order_flag,
order_date,
request_delivery_date,
entry_date,
order_amount,
order_quantity
from temp_sales_order_data t1
order by t1.order_date;
commit;
2. 执行定期装载函数并查看结果
~/regular_etl.sh
可以使用下面的分析性查询确认装载是否正确。该查询分析出检查了信用状态的新用户有所占的比例。
select round(cast(checked as float) / (checked + not_checked) * 100)||' % '
from (select
sum(case when credit_check_flag='y' then 1 else 0 end) checked,
sum(case when credit_check_flag='n' then 1 else 0 end) not_checked
from sales_order_fact a, sales_order_attribute_dim b
where new_customer_ind = 'y'
and a.sales_order_attribute_sk = b.sales_order_attribute_sk) t;
查询结果如图2所示。
HAWQ取代传统数仓实践(十)——维度表技术之杂项维度的更多相关文章
- HAWQ取代传统数仓实践(十九)——OLAP
一.OLAP简介 1. 概念 OLAP是英文是On-Line Analytical Processing的缩写,意为联机分析处理.此概念最早由关系数据库之父E.F.Codd于1993年提出.OLAP允 ...
- HAWQ取代传统数仓实践(十六)——事实表技术之迟到的事实
一.迟到的事实简介 数据仓库通常建立于一种理想的假设情况下,这就是数据仓库的度量(事实记录)与度量的环境(维度记录)同时出现在数据仓库中.当同时拥有事实记录和正确的当前维度行时,就能够从容地首先维护维 ...
- HAWQ取代传统数仓实践(十三)——事实表技术之周期快照
一.周期快照简介 周期快照事实表中的每行汇总了发生在某一标准周期,如一天.一周或一月的多个度量.其粒度是周期性的时间段,而不是单个事务.周期快照事实表通常包含许多数据的总计,因为任何与事实表时间范围一 ...
- HAWQ取代传统数仓实践(十一)——维度表技术之维度合并
有一种合并维度的情况,就是本来属性相同的维度,因为某种原因被设计成重复的维度属性.例如,在销售订单示例中,随着数据仓库中维度的增加,我们会发现有些通用的数据存在于多个维度中.客户维度的客户地址相关信息 ...
- HAWQ取代传统数仓实践(十八)——层次维度
一.层次维度简介 大多数维度都具有一个或多个层次.例如,示例数据仓库中的日期维度就有一个四级层次:年.季度.月和日.这些级别用date_dim表里的列表示.日期维度是一个单路径层次,因为除了年-季度- ...
- HAWQ取代传统数仓实践(十二)——维度表技术之分段维度
一.分段维度简介 在客户维度中,最具有分析价值的属性就是各种分类,这些属性的变化范围比较大.对某个个体客户来说,可能的分类属性包括:性别.年龄.民族.职业.收入和状态,例如,新客户.活跃客户.不活跃客 ...
- HAWQ取代传统数仓实践(八)——维度表技术之角色扮演维度
单个物理维度可以被事实表多次引用,每个引用连接逻辑上存在差异的角色维度.例如,事实表可以有多个日期,每个日期通过外键引用不同的日期维度,原则上每个外键表示不同的日期维度视图,这样引用具有不同的含义.这 ...
- HAWQ取代传统数仓实践(十五)——事实表技术之无事实的事实表
一.无事实事实表简介 在多维数据仓库建模中,有一种事实表叫做"无事实的事实表".普通事实表中,通常会保存若干维度外键和多个数字型度量,度量是事实表的关键所在.然而在无事实的事实表中 ...
- HAWQ取代传统数仓实践(九)——维度表技术之退化维度
退化维度技术减少维度的数量,简化维度数据仓库模式.简单的模式比复杂的更容易理解,也有更好的查询性能. 有时,维度表中除了业务主键外没有其它内容.例如,在本销售订单示例中,订单维度表除了订 ...
随机推荐
- Part1.2 、RabbitMQ -- Publish/Subscribe 【发布和订阅】
python 目录 (一).交换 (Exchanges) -- 1.1 武sir 经典 Exchanges 案例展示. (二).临时队列( Temporary queues ) (三).绑定(Bind ...
- mysql数据库存储过程数据迁移案例与比较
cursor 与 insert ...select 对比: cursor:安全,不会造成死锁,可以在服务运行阶段跑,比较稳定. insert...select :速度快,但是可能造成死锁,相比curs ...
- 杭电1021Fibonacci Again
地址:http://acm.hdu.edu.cn/showproblem.php?pid=1021 题目: Problem Description There are another kind of ...
- WPF MVVM模式下ComboBox级联效果 选择第一项
MVVM模式下做的省市区的级联效果.通过改变ComboBox执行命令改变市,区. 解决主要问题就是默认选中第一项 1.首先要定义一个属性,继承自INotifyPropertyChanged接口.我这里 ...
- SpringBoot 密码MD5加密
public class PasswordEncrypt { public static String encodeByMd5(String string) throws NoSuchAlgorith ...
- Dangling Javadoc comment
Javadoc主要用于对类和方法的注释.Javadoc没有@file和@date的注解.Javadoc has no @file or @date tags. You should be taggin ...
- Pandas数据帧(DataFrame)
数据帧(DataFrame)是二维数据结构,即数据以行和列的表格方式排列. 数据帧(DataFrame)的功能特点: 潜在的列是不同的类型 大小可变 标记轴(行和列) 可以对行和列执行算术运算 结构体 ...
- Listview_简单使用_(Virtual)
1.代码来自于“C:\Program Files (x86)\Borland\Delphi7\Demos\Virtual Listview” 1.1.是使用 ListView来显示数据 1.2.自己管 ...
- Java_WebKit
1. http://tieba.baidu.com/p/2807579276 下载地址: http://qtjambi.org/downloads https://qt.gitorious.org/q ...
- tensorflow笔记:使用tf来实现word2vec
(一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔 ...