数据结构C

Time Limit: 20 Sec  Memory Limit: 512 MB

Description

  

Input

  

Output

  

Sample Input

  

Sample Output

  

HINT

  

Solution

  首先,D操作为删除操作显然不可做,又发现这道题可以离线处理,那么我们考虑倒着来,维护加入操作。

  那么这时候,D操作就变为了合并操作,那么这时候我们只需要维护一个:可以支持单点修改查询第 k 大信息可合并的数据结构即可。

  显然构建若干棵权值线段树即可!对于每个联通块维护一棵线段树,用并查集判断两点是否在一个块内。

  这时候,D操作显然判断一下两点是否在一个联通块内,不在则合并两棵线段树;Q操作就是查询第 k 大,在树上二分即可;C操作就是原来值个数-1新加入值个数+1

  就简单地解决了这题啦!(本质上就是BZOJ1926弱化 + BZOJ1015 QWQ)

Code

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std; const int ONE = ;
const int INF = 2e6;
const int Base = 1e6; int n, m;
int opt, x, val;
int Val[];
char s[]; int Ans[], ans_num = ; int fat[]; int Num = , del[];
struct power {int opt, x, val;} oper[ONE];
struct point {int x, y;} a[];
int total = ;
struct seg
{
int root;
int left, right;
int val;
}Node[ONE * ]; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} int Find(int x)
{
if(fat[x] == x) return x;
return fat[x] = Find(fat[x]);
} void Un(int x, int y)
{
int f1 = Find(x), f2 = Find(y);
if(f1 != f2) fat[f1] = f2;
} void Update(int &i, int l, int r, int Val, int opt) //pos = Val , + opt
{
if(!i) i = ++total; Node[i].val = Node[i].val + opt; if(l == r) return;
int mid = l + r >> ; if(Val <= mid) Update(Node[i].left, l, mid, Val, opt);
else Update(Node[i].right, mid + , r, Val, opt); } int Merge(int y, int x) //y merge to x
{
if(x == || y == ) return x + y; Node[x].val += Node[y].val;
Node[x].left = Merge(Node[x].left, Node[y].left);
Node[x].right = Merge(Node[x].right, Node[y].right); return x;
} int Query(int i, int l, int r, int k) //k da
{
if(l == r) return l;
int mid = l + r >> , Val = Node[ Node[i].right ].val; if(k > Val)
return Query(Node[i].left, l, mid, k - Val);
else
return Query(Node[i].right, mid + , r, k);
} void Deal_first()
{
for(int i = ; i <= n; i++)
fat[i] = i, Node[i].root = ++total;
for(int i = ; i <= m; i++)
if(del[i] != ) Un(a[i].x, a[i].y);
for(int i = ; i <= n; i++)
Update(Node[Find(i)].root, , INF, Val[i], );
} void Deal_add(int x, int y)
{
x = Find(x), y = Find(y);
if(x == y) return;
Merge(Node[x].root, Node[y].root);
fat[x] = y;
} void Deal_query(int root, int k)
{
root = Find(root);
if(Node[root].val < k) {Ans[++ans_num] = + Base; return;}
Ans[++ans_num] = Query(Node[root].root, , INF, k);
} void Deal_change(int x, int y) //x is point, y is need val
{
int root = Find(x);
Update(Node[root].root, , INF, Val[x], -);
Update(Node[root].root, , INF, y, );
Val[x] = y;
} int main()
{
n = get(); m = get(); for(int i = ; i <= n; i++) Val[i] = get() + Base;
for(int i = ; i <= m; i++)
a[i].x = get(), a[i].y = get();
for(;;)
{
scanf("%s", s);
if(s[] == 'E') break;
if(s[] == 'D')
x = get(), del[x] = , oper[++Num] = (power){, x, };
if(s[] == 'Q')
x = get(), val = get(), oper[++Num] = (power){, x, val};
if(s[] == 'C')
x = get(), val = get(), oper[++Num] = (power){, x, Val[x]}, Val[x] = val + Base;
} Deal_first();
for(int i = Num; i >= ; i--)
{
if(oper[i].opt == ) Deal_add(a[ oper[i].x ].x, a[ oper[i].x ].y);
if(oper[i].opt == ) Deal_query(oper[i].x, oper[i].val);
if(oper[i].opt == ) Deal_change(oper[i].x, oper[i].val);
} for(int i = ans_num; i >= ; i--)
printf("%d\n", Ans[i] - Base);
}
  • [提交][状态][讨论]

【Foreign】数据结构C [线段树]的更多相关文章

  1. 数据结构-PHP 线段树的实现

    转: 数据结构-PHP 线段树的实现 1.线段树介绍 线段树是基于区间的统计查询,线段树是一种 二叉搜索树,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点.使用线段树可以快速的查 ...

  2. 【数据结构】线段树(Segment Tree)

    假设我们现在拿到了一个非常大的数组,对于这个数组里面的数字要反复不断地做两个操作. 1.(query)随机在这个数组中选一个区间,求出这个区间所有数的和. 2.(update)不断地随机修改这个数组中 ...

  3. 数据结构1 线段树查询一个区间的O(log N) 复杂度的证明

    线段树属于二叉树, 其核心特征就是支持区间加法,这样就可以把任意待查询的区间$[L, R]$分解到线段树的节点上去,再把这些节点的信息合并起来从而得到区间$[L,R]$的信息. 下面证明在线段树上查询 ...

  4. 数据结构(线段树):Educational Codeforces Round 6 620E. New Year Tree

    E. New Year Tree time limit per test 3 seconds memory limit per test 256 megabytes input standard in ...

  5. 数据结构(线段树):BZOJ 1568 [JSOI2008]Blue Mary开公司

    1568: [JSOI2008]Blue Mary开公司 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 602  Solved: 214[Submit ...

  6. 牛客练习赛28 B数据结构(线段树)

    链接:https://www.nowcoder.com/acm/contest/200/B来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言5242 ...

  7. 2018.10.12 NOIP模拟 数据结构(线段树)

    传送门 sb线段树题居然还卡常. 修改操作直接更新区间最小值和区间标记下传即可. 询问加起来最多5e65e65e6个数. 因此直接询问5e65e65e6次最小值就行了. 代码

  8. 【uoj#228】基础数据结构练习题 线段树+均摊分析

    题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有三种:区间加.区间开根.区间求和. $n,m,a_i\le 100000$ . 题解 线段树+均摊分析 对于原来的两个数 $a$ ...

  9. 【Foreign】Weed [线段树]

    Weed Time Limit: 20 Sec  Memory Limit: 512 MB Description 从前有个栈,一开始是空的. 你写下了 m 个操作,每个操作形如 k v : 若 k ...

随机推荐

  1. 20172330 2017-2018-1 《Java程序设计》第八周学习总结

    学号 2017-2018-1 <程序设计与数据结构>第八周学习总结 教材学习内容总结 这一章主要是对多态性的学习: 由继承实现多态性 多态性引用能够随时间变化指向不同类型的对象. 对于多态 ...

  2. Right-BICEP要求四则2的测试用例

    测试方法:Right-BICEP 测试计划 1.Right-结果是否正确? 2.B-是否所有的边界条件都是正确的? 3.P-是否满足性能要求? 4.是否有乘除法? 5.是否有括号? 6.是否有真分数? ...

  3. 开启假期JAVA之路

    . 从最基础的JAVA开始学起,已经上了三节课啦!希望在课程结束后能完成一个令自己满意的连连看项目,期待ing~ 慢慢的从简单的代码上手了~ . 用循环输出等腰三角形的效果 import java.u ...

  4. try-with-resources语句

    try-with-resources语句是一种声明了一种或多种资源的try语句.资源是指在程序用完了之后必须要关闭的对象.try-with-resources语句保证了每个声明了的资源在语句结束的时候 ...

  5. BZOJ 1791 岛屿(环套树+单调队列DP)

    题目实际上是求环套树森林中每个环套树的直径. 对于环套树的直径,可以先找到这个环套树上面的环.然后把环上的每一点都到达的外向树上的最远距离作为这个点的权值. 那么直径一定就是从环上的某个点开始,某个点 ...

  6. BZOJ 1797 最小割(最小割割边唯一性判定)

    问题一:是否存在一个最小代价路径切断方案,其中该道路被切断? 问题二:是否对任何一个最小代价路径切断方案,都有该道路被切断? 现在请你回答这两个问题. 最小割唯一性判定 jcvb: 在残余网络上跑ta ...

  7. 前端基础:JavaScript介绍

    JavaScript介绍 一.JavaScript简介 1.在1995年时,由Netscape公司的Brendan Eich,在网景导航者浏览器上首次设计实现二层,因为Netscape与Sun合作,N ...

  8. BZOJ4773 负环(floyd+倍增)

    倍增floyd求出经过<=2k条边时两点间最短路,一个点到自身的最短路就是包含该点的最小环.然后倍增找答案即可.注意初始时到自身的最短路设为0,这样求出的最短路就是经过<=2k条边的而不是 ...

  9. pascal语言中学版整理

    P1:主菜单File中的Command shell选项,可以暂时退出Pascal,进入DOS提示符状态,但Pascal仍然驻留在内存中.输入命令exit即可返回Pascal. P3:Edit菜单中Un ...

  10. paramiko连接远程主机,上传下载文件

    Paramiko是基于SSHv2协议实现的一个Python模块,提供客户端和服务器的功能.Paramiko本身是一个围绕SSH网络概念的纯Python接口. Client: # 创建一个SSH连接对象 ...