题目链接:http://poj.org/problem?id=3678

题目:

题意:给你a,b,c,op,op为逻辑运算符或、与、异或,使得a op b = c,让你判断这些运算符是否存在矛盾,不存在输出YES,存在输出NO。

思路:2-SAT问题。2-SAT问题一般都是每个节点有两种选择,并且在节点中间将存在一定的限制,譬如a为1,那么b必须为1或a为0,b必须为1……而且当一个命题存在时,它的逆否命题必然存在(此处由命题为真,则其逆否命题也为真得证)。我们通过将这些关系转换成有向的边,通过tarjan缩点,我们可以通过判断同一个节点是否它的两种选择在同一个SCC中来决定是否存在矛盾。此题我们假设i为i节点取1,i+n为i节点取0,然后对c和op进行分类讨论,进行建图跑tarjan,从而解决此题。

代码实现如下:

 #include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long ll;
typedef pair<ll, ll> pll;
typedef pair<ll, int> pli;
typedef pair<int, ll> pil;;
typedef pair<int, int> pii;
typedef unsigned long long ull; #define lson i<<1
#define rson i<<1|1
#define bug printf("*********\n");
#define FIN freopen("D://code//in.txt", "r", stdin);
#define debug(x) cout<<"["<<x<<"]" <<endl;
#define IO ios::sync_with_stdio(false),cin.tie(0); const double eps = 1e-;
const int mod = ;
const int maxn = 1e6 + ;
const double pi = acos(-);
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f; int n, m, a, b, c, tot, cnt, num, top;
char op[];
int head[<<];
int vis[<<], dfn[<<], low[<<], stc[<<], p[<<]; struct edge {
int v, next;
}ed[maxn<<]; void addedge(int u, int v) {
ed[tot].v = v;
ed[tot].next = head[u];
head[u] = tot++;
} void tarjan(int x) {
dfn[x] = low[x] = ++num;
stc[++top] = x, vis[x] = ;
for(int i = head[x]; ~i; i = ed[i].next) {
int y = ed[i].v;
if(!dfn[y]) {
tarjan(y);
low[x] = min(low[x], low[y]);
} else if(vis[y]) {
low[x] = min(low[x], low[y]);
}
}
if(dfn[x] == low[x]) {
int y; cnt++;
do {
y = stc[top--], vis[y] = ;
p[y] = cnt;
} while(x != y);
}
} int main() {
//FIN;
scanf("%d%d", &n, &m);
memset(head, -, sizeof(head));
for(int i = ; i <= m; i++) {
scanf("%d%d%d%s", &a, &b, &c, op);
if(op[] == 'A') {
if(c == ) {
addedge(a + n, a);
addedge(b + n, b);
} else {
addedge(a, b + n);
addedge(b, a + n);
}
} else if(op[] == 'O') {
if(c == ) {
addedge(a + n, b);
addedge(b + n, a);
} else {
addedge(a, a + n);
addedge(b, b + n);
}
} else {
if(c == ) {
addedge(a, b + n);
addedge(b, a + n);
addedge(a + n, b);
addedge(b + n, a);
} else {
addedge(a, b);
addedge(b, a);
addedge(a + n, b + n);
addedge(b + n, a + n);
}
}
}
for(int i = ; i < * n; i++) {
if(!dfn[i]) {
tarjan(i);
}
}
int flag = ;
for(int i = ; i < n; i++) {
if(p[i] == p[i+n]) {
flag = ;
break;
}
}
if(flag) puts("YES");
else puts("NO");
return ;
}

Katu Puzzle(POJ3678+2-SAT问题+tarjan缩点)的更多相关文章

  1. POJ 3678 Katu Puzzle(2 - SAT) - from lanshui_Yang

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  2. poj3678 Katu Puzzle 2-SAT

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6714   Accepted: 2472 Descr ...

  3. POJ3678 Katu Puzzle 【2-sat】

    题目 Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean ...

  4. POJ3678:Katu Puzzle——题解

    http://poj.org/problem?id=3678 总觉得这题比例题简单. 设a为x取0的点,a+n为x取1的点. 我们还是定义a到b表示取a必须取b. 那么我们有: 当AND: 1.当c= ...

  5. poj 3678 Katu Puzzle(2-sat)

    Description Katu Puzzle ≤ c ≤ ). One Katu ≤ Xi ≤ ) such that for each edge e(a, b) labeled by op and ...

  6. POJ 3678 Katu Puzzle (2-SAT)

                                                                         Katu Puzzle Time Limit: 1000MS ...

  7. POJ 3678 Katu Puzzle (经典2-Sat)

    Katu Puzzle Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6553   Accepted: 2401 Descr ...

  8. poj 3678 Katu Puzzle 2-SAT 建图入门

    Description Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a ...

  9. POJ 3678 Katu Puzzle

    Description 给出一个关系,包括 And,Xor,Or 问是否存在解. Sol 经典的2-SAT问题. 把每个值看成两个点,一个点代表选 \(0\) ,另一个代表选 \(1\) . 首先来看 ...

随机推荐

  1. iOS-开发过程中应用间跳转问题

  2. TCP系列19—重传—9、thin stream下的重传

    一.介绍 当TCP连续大量的发送数据的时候,当出现丢包的时候可以有足够的dup ACK来触发快速重传.但是internet上还有大量的交互式服务,这类服务一般都是由小包组成,而且一次操作中需要传输的数 ...

  3. JDK版本Java SE、Java EE、Java ME的区别

    想在win7 X64上搭建JAVA开发环境来着(只是尝试下),打开JAVA 官网下载JDK,发现好多版本懵了,百度了下找到这些版本的区别,故有了下文 1.JAVA SE Java2平台标准版(Java ...

  4. extract函数行结果

    $arr2=array('a'=>'aaaa','b'=>'bbbb','c'=>'cccc','d'=>'dddd','e'=>'eeeee','b'=>'fff ...

  5. linux解压zip

    用 unzip 的先安装 yum install -y unzip #unzip file.zip -d /root  -d指解压路径 ,不写的话默认当前目录

  6. canvas drawImage 不显示

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. 事件驱动与异步IO--待更新

    论事件驱动与异步IO 通常,我们写服务器处理模型的程序时,有以下几种模型: (1)每收到一个请求,创建一个新的进程,来处理该请求: (2)每收到一个请求,创建一个新的线程,来处理该请求: (3)每收到 ...

  8. 【题解】SCOI2007组队

    恩……为什么大家都这么执着于 \(O(n^{2})\) 的复杂度捏?如果接受 \(O(n^{2} + nV)\) 的复杂度,那这题可不是道**题吗( • ̀ω•́ )✧ 首先把所有的人按照身高排个序, ...

  9. [luogu1654]OSU!

    update 9.20:本篇题解已经被\(yyb\)证明是出锅的 这道题目最后的式子看上去是很简单的,不到10行就码完了,但是求式子的过程并没有那么简单. 很容易想到一种枚举思路: 因为每一段连续的1 ...

  10. Java异常捕捉

    相信你在处理异常的时候不是每次都把它 throws 掉就完事了,很多时候异常是需要我们自己来 catch 并针对所抛出的 Exception 做一些后续的处理工作. 直接上代码,先贴下面测试需要调用的 ...