leetcode-前K个高频元素
给定一个非空的整数数组,返回其中出现频率前 k 高的元素。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
示例 2:
输入: nums = [1], k = 1
输出: [1]
说明:
- 你可以假设给定的 k 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
- 你的算法的时间复杂度必须优于 O(n log n) , n 是数组的大小。
思路:利用数据结构,map来添加。因此map中记录了nums[i]为key, 出现的次数count为values。
之后通过Arrays.sort(map)来进行排序。
Map.entrySet() 这个方法返回的是一个Set<Map.Entry<K,V>>,Map.Entry 是Map中的一个接口,他的用途是表示一个映射项(里面有Key和Value),而Set<Map.Entry<K,V>>表示一个映射项的Set。Map.Entry里有相应的getKey和getValue方法。
class Solution {
public List<Integer> topKFrequent(int[] nums, int k) {
List<Integer> res=new ArrayList();
Map<Integer,Integer> map=new HashMap();
for(int i=0;i<nums.length;i++){
if(!map.containsKey(nums[i])){
map.put(nums[i],1);
}else{
map.put(nums[i],map.get(nums[i])+1);
}
}
List<Map.Entry<Integer,Integer>> list=new ArrayList(map.entrySet());
//然后通过比较器来实现排序
Collections.sort(list,new Comparator<Map.Entry<Integer,Integer>>(){
public int compare(Map.Entry<Integer,Integer> a,Map.Entry<Integer,Integer> b){
return b.getValue().compareTo(a.getValue()); //倒序排列
}
});
for(Map.Entry<Integer,Integer> mapping:list){
res.add(mapping.getKey());
if(res.size()==k){
break;
}
}
return res;
}
}
leetcode-前K个高频元素的更多相关文章
- 【LeetCode题解】347_前K个高频元素(Top-K-Frequent-Elements)
目录 描述 解法一:排序算法(不满足时间复杂度要求) Java 实现 Python 实现 复杂度分析 解法二:最小堆 思路 Java 实现 Python 实现 复杂度分析 解法三:桶排序(bucket ...
- LeetCode:前K个高频元素【347】
LeetCode:前K个高频元素[347] 题目描述 给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [ ...
- Java实现 LeetCode 347 前 K 个高频元素
347. 前 K 个高频元素 给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2: 输 ...
- Top K Frequent Elements 前K个高频元素
Top K Frequent Elements 347. Top K Frequent Elements [LeetCode] Top K Frequent Elements 前K个高频元素
- 前 K 个高频元素问题
前 K 个高频元素问题 作者:Grey 原文地址: 前 K 个高频元素问题 题目描述 LeetCode 347. Top K Frequent Elements 思路 第一步,针对数组元素封装一个数据 ...
- 代码题(3)— 最小的k个数、数组中的第K个最大元素、前K个高频元素
1.题目:输入n个整数,找出其中最小的K个数. 例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4. 快排思路(掌握): class Solution { public ...
- leetcode347. 前 K 个高频元素
题目最终需要返回的是前 kk 个频率最大的元素,可以想到借助堆这种数据结构,对于 kk 频率之后的元素不用再去处理,进一步优化时间复杂度. 具体操作为: 借助 哈希表 来建立数字和其出现次数的映射,遍 ...
- 力扣 - 347. 前 K 个高频元素
目录 题目 思路1(哈希表与排序) 代码 复杂度分析 思路2(建堆) 代码 复杂度分析 题目 347. 前 K 个高频元素 思路1(哈希表与排序) 先用哈希表记录所有的值出现的次数 然后将按照出现的次 ...
- 代码随想录第十三天 | 150. 逆波兰表达式求值、239. 滑动窗口最大值、347.前 K 个高频元素
第一题150. 逆波兰表达式求值 根据 逆波兰表示法,求表达式的值. 有效的算符包括 +.-.*./ .每个运算对象可以是整数,也可以是另一个逆波兰表达式. 注意 两个整数之间的除法只保留整数部分. ...
- [LeetCode] Top K Frequent Elements 前K个高频元素
Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...
随机推荐
- PAT——1014. 福尔摩斯的约会
大侦探福尔摩斯接到一张奇怪的字条:“我们约会吧! 3485djDkxh4hhGE 2984akDfkkkkggEdsb s&hgsfdk d&Hyscvnm”.大侦探很快就明白了,字条 ...
- Vue教程:组件Component详解(六)
一.什么是组件? 组件 (Component) 是 Vue.js 最强大的功能之一.组件可以扩展 HTML 元素,封装可重用的代码.在较高层面上,组件是自定义元素,Vue.js 的编译器为它添加特殊功 ...
- css清除间隙
.clear{clear:both;height:0;width:0;line-height:0;overflow:hidden;}
- Oracle以固定字符截取字符串
CREATE OR REPLACE FUNCTION "F_SPLIT" (p_str IN CLOB, p_delimiter IN VARCHAR2) RETURN ty_st ...
- 数据库与python的连接
db=web.database( dbn="mysql", host="localhost", port=3306, user="root" ...
- 发送邮箱验证码、session校验
本篇主要描述“发送邮箱验证码.session校验”相关前(html\js)后(java)台代码,业务逻辑示例,闲话少诉,直接上代码. 1.引入的jar包是mail-1.4.jar 2.java底层发送 ...
- 对DataSet,DataRow,DateTable转换成相应的模型
/// <summary> /// DataRow 转成 模型 /// </summary> /// <t ...
- Django学习之mysql应用基础
使用pip 安装mysql pip install mysql 使用命令行打开数据库且选择使用已有的数据库 显示已有数据库show databases; 选择已有数据库 use s23; 显示s23数 ...
- LeetCode初级算法的Python实现--链表
LeetCode初级算法的Python实现--链表 之前没有接触过Python编写的链表,所以这里记录一下思路.这里前面的代码是和leetcode中的一样,因为做题需要调用,所以下面会给出. 首先定义 ...
- SAP Odata実行命令(1)
$count $Orderby:desc/asc ※$Orderby=ソートする項目 desc降順/asc昇順 を指定すること $Filter: $Skip,Top and Inline count: ...