给定一个非空的整数数组,返回其中出现频率前 高的元素。

示例 1:

输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

示例 2:

输入: nums = [1], k = 1
输出: [1]

说明:

  • 你可以假设给定的 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
  • 你的算法的时间复杂度必须优于 O(n log n) , 是数组的大小。

思路:利用数据结构,map来添加。因此map中记录了nums[i]为key, 出现的次数count为values。

之后通过Arrays.sort(map)来进行排序。

Map.entrySet() 这个方法返回的是一个Set<Map.Entry<K,V>>,Map.Entry 是Map中的一个接口,他的用途是表示一个映射项(里面有Key和Value),而Set<Map.Entry<K,V>>表示一个映射项的Set。Map.Entry里有相应的getKey和getValue方法。

class Solution {
public List<Integer> topKFrequent(int[] nums, int k) {
List<Integer> res=new ArrayList();
Map<Integer,Integer> map=new HashMap();
for(int i=0;i<nums.length;i++){
if(!map.containsKey(nums[i])){
map.put(nums[i],1);
}else{
map.put(nums[i],map.get(nums[i])+1);
}
}
List<Map.Entry<Integer,Integer>> list=new ArrayList(map.entrySet());
//然后通过比较器来实现排序
Collections.sort(list,new Comparator<Map.Entry<Integer,Integer>>(){
public int compare(Map.Entry<Integer,Integer> a,Map.Entry<Integer,Integer> b){
return b.getValue().compareTo(a.getValue()); //倒序排列
}
});
for(Map.Entry<Integer,Integer> mapping:list){
res.add(mapping.getKey());
if(res.size()==k){
break;
}
}
return res;
}
}

leetcode-前K个高频元素的更多相关文章

  1. 【LeetCode题解】347_前K个高频元素(Top-K-Frequent-Elements)

    目录 描述 解法一:排序算法(不满足时间复杂度要求) Java 实现 Python 实现 复杂度分析 解法二:最小堆 思路 Java 实现 Python 实现 复杂度分析 解法三:桶排序(bucket ...

  2. LeetCode:前K个高频元素【347】

    LeetCode:前K个高频元素[347] 题目描述 给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [ ...

  3. Java实现 LeetCode 347 前 K 个高频元素

    347. 前 K 个高频元素 给定一个非空的整数数组,返回其中出现频率前 k 高的元素. 示例 1: 输入: nums = [1,1,1,2,2,3], k = 2 输出: [1,2] 示例 2: 输 ...

  4. Top K Frequent Elements 前K个高频元素

    Top K Frequent Elements 347. Top K Frequent Elements [LeetCode] Top K Frequent Elements 前K个高频元素

  5. 前 K 个高频元素问题

    前 K 个高频元素问题 作者:Grey 原文地址: 前 K 个高频元素问题 题目描述 LeetCode 347. Top K Frequent Elements 思路 第一步,针对数组元素封装一个数据 ...

  6. 代码题(3)— 最小的k个数、数组中的第K个最大元素、前K个高频元素

    1.题目:输入n个整数,找出其中最小的K个数. 例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4. 快排思路(掌握): class Solution { public ...

  7. leetcode347. 前 K 个高频元素

    题目最终需要返回的是前 kk 个频率最大的元素,可以想到借助堆这种数据结构,对于 kk 频率之后的元素不用再去处理,进一步优化时间复杂度. 具体操作为: 借助 哈希表 来建立数字和其出现次数的映射,遍 ...

  8. 力扣 - 347. 前 K 个高频元素

    目录 题目 思路1(哈希表与排序) 代码 复杂度分析 思路2(建堆) 代码 复杂度分析 题目 347. 前 K 个高频元素 思路1(哈希表与排序) 先用哈希表记录所有的值出现的次数 然后将按照出现的次 ...

  9. 代码随想录第十三天 | 150. 逆波兰表达式求值、239. 滑动窗口最大值、347.前 K 个高频元素

    第一题150. 逆波兰表达式求值 根据 逆波兰表示法,求表达式的值. 有效的算符包括 +.-.*./ .每个运算对象可以是整数,也可以是另一个逆波兰表达式. 注意 两个整数之间的除法只保留整数部分. ...

  10. [LeetCode] Top K Frequent Elements 前K个高频元素

    Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...

随机推荐

  1. NopCommerce 3.4省市联动

    做法有两种,一种是在StateProvince表里面加个字段,另一种是新建两个表,用来存市.县的数据,表结构完全按照StateProvince走就好了.我这里用的是第二种做法,菜鸟一枚,代码写的比较烂 ...

  2. 绘图驱动-OSD原理2

    转载自:http://blog.pfan.cn/programming/21209.html 现在已经可以通过修改存储单元内容来改变OSD的像素,但还有个关键的问题是如何根据需要来进行操作,即如何将某 ...

  3. linux内存管理---虚拟地址、逻辑地址、线性地址、物理地址的区别(一)

    分析linux内存管理机制,离不了上述几个概念,在介绍上述几个概念之前,先从<深入理解linux内核>这本书中摘抄几段关于上述名词的解释: 一.<深入理解linux内核>的解释 ...

  4. Spark Streaming编程示例

    近期也有开始研究使用spark streaming来实现流式处理.本文以流式计算word count为例,简单描述如何进行spark streaming编程. 1. 依赖的jar包 参考<分别用 ...

  5. var let const的一些区别

    var let const 都是来定义变量的. var let 作用域有些区别. const 类似于java中的常量的概念.即:只能给一个变量赋值一次,即指定一个引用. 举例来说: function ...

  6. linux 安全防护

    一.禁止ROOT用户远程登录 linux中root用户是超级管理员,可以针对root用户暴力破解密码,这样很不安全,工作中我们一般禁止root用户直接远程登陆,开设一个或多个普通用户,只允许登陆普通用 ...

  7. RAID磁盘阵列的原理

    RAID概念 磁盘阵列(Redundant Arrays of Independent Disks,RAID),有“独立磁盘构成的具有冗余能力的阵列”之意.磁盘阵列是由很多价格较便宜的磁盘,以硬件(R ...

  8. linux系统基础之--进程计划(基于centos7.4 1708)

  9. 如何将js字符串变成首字母大写其余小写

    有时候会接收到一些大小写不规则的字符串,如"JAMES"."alice"."Amy"等,如何将他们统一的变成首字母大写其余小写的形式呢? 思 ...

  10. json提取嵌套数据

    //数据 string html = "{\"code\":\"0000\",\"desc\":\"\",\& ...