lx让做的题,其实很简单,难度评到紫令人吃惊

首先读进来\(n,m\)先\(++\),之后就是一个格点数为\(n*m\)的矩阵了

我们直接求很那做,补集转化一下,我们容斥来做

首先所有的情况自然是\(C_{n*m}^3\)了

再算出不合法的情况

之后有\(m\)列,三个点在同一列上的方案数自然是\(m*C_n^3\)

有\(n\)行,三个点在同一行的方案数是\(n*C_m^3\)

最后还有斜线上的情况,由于一条方向向量为\((x,y)\)的直线,当两个端点在整点上的时候,直线上还有\(gcd(x,y)-1\)个整点,而这样的的直线一共有\((n-x)(m-y)\)条,这样只考虑了斜率为正的情况,自然还有斜率为负的情况,显然两种情况数量相等,最后还要再乘以二

所以斜线上三点共线的方案数为

\[2*\sum_{i=1}^n\sum_{j=1}^m(gcd(i,j)-1)*(n-i)*(m-j)
\]

那么最后的答案就是

\[C_{n*m}^3-m*C_n^3-n*C_m^3-2*\sum_{i=1}^n\sum_{j=1}^m(gcd(i,j)-1)*(n-i)*(m-j)
\]

显然这都是可以随便求得,如果\(n,m\)再大一些后面就需要反演啦

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#define LL long long
#define re register
LL n,m,ans;
inline LL C(LL n,LL m)
{
LL T=1;
for(re int i=n;i>=n-m+1;i--) T*=(LL)(i);
for(re int i=1;i<=m;i++) T/=(LL)(i);
return T;
}
inline LL read()
{
char c=getchar();
LL x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
LL gcd(LL a,LL b)
{
if(!b) return a;
return gcd(b,a%b);
}
int main()
{
n=read()+1,m=read()+1;
ans=C(n*m,3);
ans-=C(n,3)*m+C(m,3)*n;
for(re int i=1;i<=n;i++)
for(re int j=1;j<=m;j++)
ans-=2ll*(gcd(i,j)-1)*(n-i)*(m-j);
std::cout<<ans;
return 0;
}

【[CQOI2014]数三角形】的更多相关文章

  1. BZOJ 3505: [Cqoi2014]数三角形 数学

    3505: [Cqoi2014]数三角形 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  2. Bzoj 3505: [Cqoi2014]数三角形 数论

    3505: [Cqoi2014]数三角形 Time Limits: 1000 ms  Memory Limits: 524288 KB  Detailed Limits   Description

  3. bzoj 3505: [Cqoi2014]数三角形 组合数学

    3505: [Cqoi2014]数三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 478  Solved: 293[Submit][Status ...

  4. BZOJ 3505: [Cqoi2014]数三角形( 组合数 )

    先n++, m++ 显然答案就是C(3, n*m) - m*C(3, n) - n*C(3, m) - cnt. 表示在全部点中选出3个的方案减去不合法的, 同一行/列的不合法方案很好求, 对角线的不 ...

  5. 3505: [Cqoi2014]数三角形

    3505: [Cqoi2014]数三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1324  Solved: 807[Submit][Statu ...

  6. BZOJ 3505: [Cqoi2014]数三角形 [组合计数]

    3505: [Cqoi2014]数三角形 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个. 注意三角形的三点不能共线. 1<=m,n<=1000 $n++ m++$ $ans ...

  7. [CQOI2014]数三角形

    [CQOI2014]数三角形 给定\(n\times m\)的网格,求三个点在其格点上的三角形个数,1<=m,n<=1000. 解 法一:直接 显然为组合计数问题,关键在于划分问题,注意到 ...

  8. bzoj3505 / P3166 [CQOI2014]数三角形

    P3166 [CQOI2014]数三角形 前置知识:某两个点$(x_{1},,y_{1}),(x_{2},y_{2})\quad (x_{1}<x_{2},y_{1}<y_{2})$所连成 ...

  9. BZOJ 3505 [Cqoi2014]数三角形

    3505: [Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形.注意三角形的三点不能共线. Input ...

  10. 【BZOJ3505】[Cqoi2014]数三角形 组合数

    [BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. ...

随机推荐

  1. VMware workstation 非正常关机导致开机失败,解决方法

    问题:VMware workstation 非正常关机导致开机失败!如下图:

  2. Web后台模拟前端post(带NTLM验证)

    using System.Data; using System.Net; using System.IO; using System.Net.Http; using System.Web; using ...

  3. JavaScript的六种数据类型

      JavaScript数据类型有六种:number.string.boolean.null.undefined.object

  4. Bookstrap4 学习(一)

    容器 container 是最基本的lagyout 元素, 并且当使用默认的Grid 系统时, containers 是必须的. <div class="container" ...

  5. 《MySQL 基础课程》笔记整理(基础篇)

    一.尝试MySQL 1.打开MySQL # 启动MySQL服务 sudo service mysql start # 使用 root 用户登录,这里密码为空,直接回车登录 mysql -u root ...

  6. 基于bootstrap的内容折叠功能

    加入js及css支持: <link rel="stylesheet" href="css/bootstrap.min.css"/> <scri ...

  7. python 之 os._exit() sys.exit() 、exit()

    sys.exit 执行该语句会直接退出程序,这也是经常使用的方法,也不需要考虑平台等因素的影响,一般是退出Python程序的首选方法. 退出程序引发SystemExit异常,(这是唯一一个不会被认为是 ...

  8. vscode 快速生成html

    在Hbuilder中新建一个htm自动会生成一个标准的html代码,那在vscode得一行一行写吗?太烦了吧,各种关键词搜,哎妈 终于找到了办法,现在这里记录下: 第一步:在空文档中输入   ! 第二 ...

  9. hiho 1015 KMP算法 && CF 625 B. War of the Corporations

    #1015 : KMP算法 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在 ...

  10. hdu 1102 Constructing Roads (Prim算法)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Jav ...