题目描述

给出一张n个点m条边的有向图,每条边 (u,v,x,y) 描述了 u 的点权乘 x 等于 v 的点权乘 y (点权可以为负)。问:是否存在满足条件的图。

输入

有多组数据,第一行给定整数T,表示总的数据组数,之后依次给出T组数据。每一组数据的第一行给定整数N和
M,表示齿轮总数和链条总数。之后有M行,依次描述了每一个链条,其中每一行给定四个整数u,v,x和y,表示
只考虑这一组联动关系的情况下,编号为u的齿轮转动x圈,编号为v的齿轮会转动y圈。请注意,x为正整数,而y为
非零整数,但是y有可能为负数。
T<=32,N<=1000,M<=10000且x与y的绝对值均不超过100

输出

输出T行,对应每一组数据。首先应该输出标识这是第几组数据,参见样例输出。之后输出判定结果,如果N个组合
齿轮可以同时正常运行,则输出Yes,否则输出No。

样例输入

2
3 3
1 2 3 5
2 3 5 -7
1 3 3 -7
3 3
1 2 3 5
2 3 5 -7
1 3 3 7

样例输出

Case #1: Yes
Case #2: No


题解

BFS

显然固定一个点,通过条件判断出其它点是否是它的固定倍数即可。添加双向边,维护每个点是某个点的多少倍,BFS验证。

但是有一个问题:倍数关系是指数级的,因此需要取对数。

但是有一个问题:边权有负数,因此需要维护符号和绝对值的对数。

但是有一个问题:有精度误差,因此需要设eps为$10^{-6}$。

时间复杂度$O(T(n+m))$

#include <queue>
#include <cmath>
#include <cstdio>
#include <cstring>
#define N 1010
#define M 20010
using namespace std;
queue<int> q;
int head[N] , to[M] , vp[M] , next[M] , cnt , vis[N] , flag[N];
double val[M] , dis[N];
void add(int x , int y , double z , int p)
{
to[++cnt] = y , val[cnt] = z , vp[cnt] = p , next[cnt] = head[x] , head[x] = cnt;
}
bool judge(int p)
{
int i , x;
while(!q.empty()) q.pop();
vis[p] = 1 , q.push(p);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(!vis[to[i]]) vis[to[i]] = 1 , flag[to[i]] = flag[x] ^ vp[i] , dis[to[i]] = dis[x] + val[i] , q.push(to[i]);
else if(flag[to[i]] != (flag[x] ^ vp[i]) || fabs(dis[to[i]] - dis[x] - val[i]) > 1e-6) return 0;
}
}
return 1;
}
int main()
{
int T , Case;
scanf("%d" , &T);
for(Case = 1 ; Case <= T ; Case ++ )
{
memset(head , 0 , sizeof(head)) , memset(vis , 0 , sizeof(vis)) , cnt = 0;
int n , m , x , y , i , a , b;
scanf("%d%d" , &n , &m);
while(m -- )
{
scanf("%d%d%d%d" , &x , &y , &a , &b);
if(b > 0) add(x , y , log(b) - log(a) , 0) , add(y , x , log(a) - log(b) , 0);
else add(x , y , log(-b) - log(a) , 1) , add(y , x , log(a) - log(-b) , 1);
}
for(i = 1 ; i <= n ; i ++ )
if(!vis[i])
if(!judge(i))
break;
printf("Case #%d: " , Case);
if(i > n) puts("Yes");
else puts("No");
}
return 0;
}

【bzoj4602】[Sdoi2016]齿轮 BFS的更多相关文章

  1. BZOJ4602 Sdoi2016 齿轮 【带权并查集】*

    BZOJ4602 Sdoi2016 齿轮 Description 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x : y.即如果只考虑这两个组 ...

  2. BZOJ4602 SDOI2016齿轮(搜索)

    dfs一遍给每个齿轮随便标个值看是否矛盾就行了. #include<iostream> #include<cstdio> #include<cmath> #incl ...

  3. BZOJ4602:[SDOI2016]齿轮(并查集)

    Description 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x  : y.即如果只考虑这两个组合齿轮,编号为u的齿轮转动x圈,编号为v ...

  4. bzoj4602 [Sdoi2016]齿轮

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4602 [题解] 对于每组齿轮(u, v)连边,权值为y/x(反向边x/y) 那么直接dfs计 ...

  5. [bzoj4602][Sdoi2016]齿轮——dfs

    题目 现有一个传动系统,包含了N个组合齿轮和M个链条.每一个链条连接了两个组合齿轮u和v,并提供了一个传动比x : y.即如果只考虑这两个组合齿轮,编号为u的齿轮转动x圈,编号为v的齿轮会转动y圈.传 ...

  6. BZOJ4602: [Sdoi2016]齿轮(并查集 启发式合并)

    题意 题目链接 Sol 和cc的一道题很像啊 对于初始的\(N\)个点,每加一条限制实际上就是合并了两个联通块. 那么我们预处理出\(val[i]\)表示的是\(i\)节点所在的联通块根节点转了\(1 ...

  7. BZOJ4602: [Sdoi2016]齿轮 DFS 逆元

    这道题就是一个DFS,有一篇奶牛题几乎一样.但是这道题卡精度. 这道题网上的另一篇题解是有问题的.取对数这种方法可以被轻松卡.比如1e18 与 (1e9-1)*(1e9+1)取对数根本无法保证不被卡精 ...

  8. [Sdoi2016]齿轮

    4602: [Sdoi2016]齿轮 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 613  Solved: 324 [Submit][Status ...

  9. BZOJ 4602: [Sdoi2016]齿轮 dfs

    4602: [Sdoi2016]齿轮 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4602 Description 现有一个传动系统,包 ...

随机推荐

  1. Prism for WPF 搭建一个简单的模块化开发框架(六)隐藏菜单、导航

    原文:Prism for WPF 搭建一个简单的模块化开发框架(六)隐藏菜单.导航 这个实际上是在聊天之前做的,一起写了,也不分先后了 看一下效果图,上面是模块主导航,左侧是模块内菜单,现在加一下隐藏 ...

  2. Java Dictionary Example

    Dictionary class is the abstract class which is parent of any class which uses the key and value pai ...

  3. Unknown host 'services.gradle.org' 解决方法

    报错如下: Unknown host 'services.gradle.org'. You may need to adjust the proxy settings in Gradle. Learn ...

  4. quartz 核心概念

    一.quartz 核心概念 1.scheduler是一个计划调度器容器,容器里面可以盛放众多的JobDetail和trigger,当容器启动后,里面的每个JobDetail都会根据trigger按部就 ...

  5. iReport jasperReports 生成表格

    使用iReport生成表格   一 环境:iReport-5.6.0  JDK7 1.注意,iReport的最新版本目前还不支持JDK8,如果项目工程已经配置了JDK8,那也不用去修改环境变量和工程的 ...

  6. memory引擎和innodb引擎速度对比

    ysql> insert into innodb_test (name) select name from innodb_test; Query OK, rows affected ( min ...

  7. 获取Chromium代码以及编译

    获取和编译Chromium必须自备梯子,最好是购买一个稳定的V*P*N,喜欢折腾的可以使用类似shadowsock的代理(需要设置google文档). 英文版教程文档可以参考这个界面,下面详细说Win ...

  8. textview的阴影线

    android:shadowColor="#000000" android:shadowDx="1" android:shadowDy="1" ...

  9. 「题目代码」P1039~P1043(Java)

    P1039 谭浩强C语言(第三版)习题4.9 import java.util.*; import java.io.*; import java.math.BigInteger; public cla ...

  10. 第六阶段·数据库MySQL及NoSQL实践第1章·章节一MySQL数据库

    01 课程介绍 02 数据库管理系统介绍 03 MySQL安装方式介绍及源码安装 04 MySQL安装后的基本配置 05 MySQL体系结构-服务器.客户端模型 06 MySQL体系结构-实例.连接层 ...