链接:

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=989

题意:

输入一个C个点S条边(C≤100,S≤1000)的无向带权图,边权表示该路径上的噪声值。
当噪声值太大时,耳膜可能会受到伤害,所以当你从某点去往另一个点时,总是希望路上经过的最大噪声值最小。
输入一些询问,每次询问两个点,输出这两点间最优路径上的最大噪声值。

分析:

直接用floyd算法,但是要把加法改成max。
为什么可以这样做呢?不管是floyd算法还是dijkstra算法,都是基于这样一个事实:
对于任意一条至少包含两条边的路径i->j,一定存在一个中间点k,使得i>j的总长度等于i->k与k->j的长度之和。
对于不同的点k,i->k和k->j的长度之和可能不同,最后还需要取一个最小值才是i->j的最短路径。
把刚才的推理中“之和”换成“取最大值”,推理仍然适用。

代码:

 import java.io.*;
import java.util.*;
import static java.lang.Math.*; public class Main {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
final int INF = 0x3f3f3f3f;
final int UP = 100 + 5;
int G[][] = new int[UP][UP]; void MAIN() {
for(int cases = 1; ; cases++) {
int c = cin.nextInt();
int s = cin.nextInt();
int q = cin.nextInt();
if(c + s + q == 0) break;
for(int i = 0; i < c; i++) {
G[i][i] = 0;
for(int t = i+1; t < c; t++) G[i][t] = G[t][i] = INF;
}
for(int f, b, v, i = 0; i < s; i++) {
f = cin.nextInt() - 1;
b = cin.nextInt() - 1;
v = cin.nextInt();
G[f][b] = G[b][f] = min(G[b][f], v);
} for(int k = 0; k < c; k++) {
for(int i = 0; i < c; i++) {
for(int j = 0; j < c; j++) {
G[i][j] = min(G[i][j], max(G[i][k], G[k][j]));
}
}
} if(cases > 1) System.out.println();
System.out.printf("Case #%d\n", cases);
for(int f, b, i = 0; i < q; i++) {
f = cin.nextInt() - 1;
b = cin.nextInt() - 1;
if(G[f][b] == INF) System.out.println("no path");
else System.out.println(G[f][b]);
}
}
} public static void main(String args[]) { new Main().MAIN(); }
}

UVa 10048 - Audiophobia(Floyd变形)的更多相关文章

  1. UVA - 10048 Audiophobia Floyd

    思路:套用Floyd算法思想,d(i, j) = min(d(i,j), max(d(i,k), d(k,j)),就能很方便求得任意两点之间的最小噪音路径. AC代码 #include <cst ...

  2. UVA10048 Audiophobia[Floyd变形]

    UVA - 10048 Audiophobia Consider yourself lucky! Consider yourself lucky to be still breathing and h ...

  3. UVA - 10048 Audiophobia(Floyd求路径上最大值的最小)

    题目&分析: 思路: Floyd变形(见上述紫书分析),根据题目要求对应的改变判断条件来解题. 代码: #include <bits/stdc++.h> #define inf 0 ...

  4. uva 10048 Audiophobia(最小生成树)

    题目链接:10048 - Audiophobia 题目大意:有n个城市,和m条街道,每条街道有一个噪音值,q次去问,从城市a到城市b,路径上分贝值的最大值最小为多少. 解题思路:与uva 10099的 ...

  5. UVA - 10048 Audiophobia (Floyd应用)

    题意:求出两点之间所有路径最大权值的最小值. 思路:转变一下Floyd的形式即可: 注意:注意初始化问题,还有UVA奇葩的输出形式. 代码如下: #include<iostream> #i ...

  6. UVa 10048 Audiophobia【Floyd】

    题意:给出一个c个点,s条边组成的无向图,求一点到另一点的路径上最大权值最小的路径,输出这个值 可以将这个 d[i][j]=min(d[i][j],d[i][k]+d[k][j]) 改成 d[i][j ...

  7. 紫书 例题 11-5 UVa 10048 (Floyd求最大权值最小的路径)

    这道题是Floyd的变形 改成d[i][j] = min(d[i][j], max(d[i][k], d[k][j]))就好了. #include<cstdio> #include< ...

  8. UVA 10048 Audiophobia 任意两点的路径上最大的边

    题目是要求任意给定两点的的路径上最大的边,最终输出这些最大边中最小的值,也就是求一条路径使得这条路径上最大的边在所有连通两点的路径中最短.根据Floyd—Warshall算法改造一下就行了.dp[i] ...

  9. UVa 10048: Audiophobia

    这道题要求我们求出图中的给定的两个节点(一个起点一个终点,但这是无向图)之间所有“路径中最大权值”的最小值,这无疑是动态规划. 我开始时想到根据起点和终点用动态规划直接求结果,但最终由于题中S过大,会 ...

随机推荐

  1. bzoj 5319: [Jsoi2018]军训列队

    Description Solution 最优情况可以是所有人按位置从小到大排序之后依次占到自己 \(K+\) 排名的位置上去 因为每一个休息位置不同,那么一定递增,所以一定存在一个分界点,左边的是往 ...

  2. Lucence学习之一:全文检索的基本原理

    本文转载自:  http://www.cnblogs.com/forfuture1978/archive/2009/12/14/1623594.html 一.总论 根据http://lucene.ap ...

  3. <td>标签clospan和rowspan 可横跨列数和行数

    <td colspan="2"> <input type="text" name="reason_other" size= ...

  4. linux 添加开机自启动脚本

    原文 Linux设置服务开机自动启动的方式有好多种,这里介绍一下通过chkconfig命令添加脚本为开机自动启动的方法. 1. 编写脚本autostart.sh(这里以开机启动redis服务为例),脚 ...

  5. MVC 控制器中直接访问url 的方式

    public void ShowDetailsImg() { //生成MD5码 string path = @"D:\其他\Test\WebApplication2\WebApplicati ...

  6. JavaEE之servlet相关技术

    相关技术:为了灵活实现的不同路径(/hello)执行不同的资源( HeIIoMyServlet)我们需要使用XML进行配置;为了限定XML内容,我们需要使用xml约束(DTD或schema);为了获得 ...

  7. 从零开始的全栈工程师——html篇1.7

    position定位与表单 一.position 1.Position细说 Position:relative; Left:100px; Top:100px; Position:absolute; L ...

  8. <head>标签和它的小伙伴们

    head标签是HTML文档中最基本的必须元素之一(body:对,还有我): <html> <head> <title>文档的标题</title> < ...

  9. eayui grid 每一页的行号都是从1开始

    问题背景: easyui 需要显示行号的时候,我们只需要设置  rownumbers: true, 但是 不管是在哪一页,行号都是从1开始,不能连续 我们在分页的 onSelectPage 函数里去执 ...

  10. postgres备份数据库

    1. psql --help psql is the PostgreSQL interactive terminal. Usage: psql [OPTION]... [DBNAME [USERNAM ...