题目分析

一眼看上去就像是一个模拟题目,但是\(n\)的范围过大。

冷静分析一下发现难点在于如何快速求出幂和。

考虑使用伯努利数。

\(B_0=1\)

\(B_n=-\frac{1}{n+1}\sum\limits_{i=0}^{n-1}\binom{n+1}{i}* B_i\)

\(\sum\limits_{i=1}^ni^k=\frac{1}{k+1}* \sum\limits_{i=1}^{k+1} \binom{k+1}{i}* B_{k-i+1}* (n+1)^i\)

洛谷 P4593 【[TJOI2018]教科书般的亵渎】的更多相关文章

  1. 洛谷 P4593 [TJOI2018]教科书般的亵渎

    洛谷 P4593 [TJOI2018]教科书般的亵渎 神仙伯努利数...网上一堆关于伯努利数的东西但是没有证明,所以只好记结论了? 题目本质要求\(\sum_{i=1}^{n}i^k\) 伯努利数,\ ...

  2. 洛谷P4593 [TJOI2018]教科书般的亵渎 【数学】

    题目链接 洛谷P4593 题解 orz dalao upd:经典的自然数幂和,伯努利数裸题 由题我们只需模拟出代价,只需使用\(S(n,k) = \sum\limits_{i = 1}^{n} i^{ ...

  3. 洛谷P4593 [TJOI2018]教科书般的亵渎

    小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为\(a_i\)​,且每个怪物血量均不相同,小豆手里有无限张"亵渎".亵渎的效果是对所有的怪造成\(1\)点伤害,如果 ...

  4. 洛谷P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)

    题意 题目链接 Sol 打出暴力不难发现时间复杂度的瓶颈在于求\(\sum_{i = 1}^n i^k\) 老祖宗告诉我们,这东西是个\(k\)次多项式,插一插就行了 上面的是\(O(Tk^2)\)的 ...

  5. P4593 [TJOI2018]教科书般的亵渎(拉格朗日插值)

    传送门 首先所有亵渎的张数\(k=m+1\),我们考虑每一次使用亵渎,都是一堆\(i^k\)之和减去那几个没有出现过的\(j^k\),对于没有出现过的我们可以直接快速幂处理并减去,所以现在的问题就是如 ...

  6. Luogu P4593 [TJOI2018]教科书般的亵渎

    亵渎终于离开标准了,然而铺场快攻也变少了 给一个大力枚举(无任何性质)+艹出自然数幂和的方法,但是复杂度极限是\(O(k^4)\)的,不过跑的好快233 首先简单数学分析可以得出\(k=m+1\),因 ...

  7. 并不对劲的复健训练-bzoj5339:loj2578:p4593:[TJOI2018]教科书般的亵渎

    题目大意 题目链接 题解 先将\(a\)排序. \(k\)看上去等于怪的血量连续段的个数,但是要注意当存在\(a_i+1=a_{i+1}\)时,虽然它们之间的连续段为空,但是还要算上:而当\(a_m= ...

  8. p4593 [TJOI2018]教科书般的亵渎

    分析 我们发现$Ans = \sum_i \sum_j (j-p_i)^{m+1}$ 因此直接套用622f的方法即可 代码 #include<bits/stdc++.h> using na ...

  9. 【BZOJ5339】[TJOI2018]教科书般的亵渎(斯特林数)

    [BZOJ5339][TJOI2018]教科书般的亵渎(斯特林数) 题面 BZOJ 洛谷 题解 显然交亵渎的次数是\(m+1\). 那么这题的本质就是让你求\(\sum_{i=1}^n i^{m+1} ...

  10. BZOJ.5339.[TJOI2018]教科书般的亵渎(拉格朗日插值) & 拉格朗日插值学习笔记

    BZOJ 洛谷 题意的一点说明: \(k\)次方这个\(k\)是固定的,也就是最初需要多少张亵渎,每次不会改变: 因某个怪物死亡引发的亵渎不会计分. 不难发现当前所需的张数是空格数+1,即\(m+1\ ...

随机推荐

  1. HTML页面中嵌入SVG

    HTML页面中嵌入SVG的几种方式 你有N种理由使用SVG在页面中展示图像,如它的矢量特性.广泛的浏览器支持.比JPEG和PNG更小的体积.可用CSS设置外观.使用DOM API操作以及各种可用的SV ...

  2. vue+cordova项目

    教你用Cordova打包Vue项目   现在国内越来越多的开发者使用Vue开发混合app,但是当大家开发完成过后才发现不知道该怎么将Vue项目打包成app.据我现在的了解打包Vue项目目前流行的就是使 ...

  3. 通过IntelliJ IDEA忽略掉不需要提交到github的文件

    现如今,开源项目越来越多,存储容器主要有github,国内的码云.开源贡献也是衡量一个开发者是否具有足够的包容能力.技术能力的重要标准. 有些开发者没注意到这些,好心提交开源项目,配置文件也提交上去, ...

  4. java中wait和notify的关系

    java中,wait和notify这两个方法是一对,wait方法阻塞当前线程,而notify是唤醒被wait方法阻塞的线程.     首先,需要说明的是,wait和notify方法都是Object的实 ...

  5. Navicat 大小写

    1.找到数据库表的存在位置 比如我的是C:\ProgramData\MySQL\MySQL Server 5.7\Data\tinysdpm 2.修改小写的表名称 比如customer_type.fr ...

  6. WPF 资源字典

    使用好处:存储需要被本地话的内容(错误消息字符串等,实现软编码),减少重复的代码,重用样式,实现多个项目之间的共享资源;修改一个地方所有引用的地方都会被修改,方便统一风格; 使用方法,归纳起来主要有下 ...

  7. FTPS Firewall

    989 for the FTPS data channel implicit FTPS was expected to listen on the IANA Well Known Port 990/T ...

  8. 三:SpringTransaction

    一:什么是事务: 事务逻辑上的一组操作,组成这组操作的各个逻辑单元,要么一起成功,要么一起失败. 二:事务特性(ACID): 原子性(Atomicity) :强调事务的不可分割. 一致性(Consis ...

  9. Spring Cloud实战之初级入门(五)— 配置中心服务化与配置实时刷新

    目录 1.环境介绍 2.配置中心服务化 2.1 改造mirco-service-spring-config 2.2 改造mirco-service-provider.mirco-service-con ...

  10. spring-boot-maven-plugin 插件

    添加了spring-boot-maven-plugin插件后,当运行maven打包的命令,项目会被打包成一个可以直接运行的jar包,使用"java -jar"可以直接运行. 当项目 ...