scrapy-redis组件的使用
scrapy-redis是一个基于redis的scrapy组件,通过它可以快速实现简单分布式爬虫程序,该组件本质上提供了三大功能:
- scheduler - 调度器
- dupefilter - URL去重规则(被调度器使用)
- pipeline - 数据持久化
scrapy-redis组件
安装:pip install scrapy-redis
1. URL去重
1.更改配置文件中scrapy使用的去重类
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
2.配置文件中添加连接redis的配置
REDIS_HOST = 'localhost'
REDIS_PORT = 6379
REDIS_PARAMS = {}
REDIS_ENCODING = "utf-8"
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
定义去重规则(被调度器调用并应用) a. 内部会使用以下配置进行连接Redis # REDIS_HOST = 'localhost' # 主机名 # REDIS_PORT = 6379 # 端口 # REDIS_URL = 'redis://user:pass@hostname:9001' # 连接URL(优先于以上配置) # REDIS_PARAMS = {} # Redis连接参数 密码可以设置在此 默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,}) # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块 默认:redis.StrictRedis # REDIS_ENCODING = "utf-8" # redis编码类型 默认:'utf-8' b. 去重规则通过redis的集合完成,集合的Key为: key = defaults.DUPEFILTER_KEY % {'timestamp': int(time.time())} 默认配置: DUPEFILTER_KEY = 'dupefilter:%(timestamp)s' c. 去重规则中将url转换成唯一标示,然后在redis中检查是否已经在集合中存在 from scrapy.utils import request from scrapy.http import Request req = Request(url='http://www.cnblogs.com/wupeiqi.html') result = request.request_fingerprint(req) print(result) # 8ea4fd67887449313ccc12e5b6b92510cc53675c PS: - URL参数位置不同时,计算结果一致; - 默认请求头不在计算范围,include_headers可以设置指定请求头 示例: from scrapy.utils import request from scrapy.http import Request req = Request(url='http://www.baidu.com?name=8&id=1',callback=lambda x:print(x),cookies={'k1':'vvvvv'}) result = request.request_fingerprint(req,include_headers=['cookies',]) print(result) req = Request(url='http://www.baidu.com?id=1&name=8',callback=lambda x:print(x),cookies={'k1':666}) result = request.request_fingerprint(req,include_headers=['cookies',]) print(result) """# Ensure all spiders share same duplicates filter through redis.# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter" |
2. 调度器
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
"""调度器,调度器使用PriorityQueue(有序集合)、FifoQueue(列表)、LifoQueue(列表)进行保存请求,并且使用RFPDupeFilter对URL去重 a. 调度器 SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表) SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 调度器中请求存放在redis中的key SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 对保存到redis中的数据进行序列化,默认使用pickle SCHEDULER_PERSIST = True # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空 SCHEDULER_FLUSH_ON_START = True # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空 SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。 SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重规则,在redis中保存时对应的key SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重规则对应处理的类"""# Enables scheduling storing requests queue in redis.SCHEDULER = "scrapy_redis.scheduler.Scheduler"# Default requests serializer is pickle, but it can be changed to any module# with loads and dumps functions. Note that pickle is not compatible between# python versions.# Caveat: In python 3.x, the serializer must return strings keys and support# bytes as values. Because of this reason the json or msgpack module will not# work by default. In python 2.x there is no such issue and you can use# 'json' or 'msgpack' as serializers.# SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat"# Don't cleanup redis queues, allows to pause/resume crawls.# SCHEDULER_PERSIST = True# Schedule requests using a priority queue. (default)# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue'# Alternative queues.# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.FifoQueue'# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.LifoQueue'# Max idle time to prevent the spider from being closed when distributed crawling.# This only works if queue class is SpiderQueue or SpiderStack,# and may also block the same time when your spider start at the first time (because the queue is empty).# SCHEDULER_IDLE_BEFORE_CLOSE = 10 |
3. 数据持久化
|
1
2
3
4
5
6
7
8
|
2. 定义持久化,爬虫yield Item对象时执行RedisPipeline a. 将item持久化到redis时,指定key和序列化函数 REDIS_ITEMS_KEY = '%(spider)s:items' REDIS_ITEMS_SERIALIZER = 'json.dumps' b. 使用列表保存item数据 |
4. 起始URL相关
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
"""起始URL相关 a. 获取起始URL时,去集合中获取还是去列表中获取?True,集合;False,列表 REDIS_START_URLS_AS_SET = False # 获取起始URL时,如果为True,则使用self.server.spop;如果为False,则使用self.server.lpop b. 编写爬虫时,起始URL从redis的Key中获取 REDIS_START_URLS_KEY = '%(name)s:start_urls' """# If True, it uses redis' ``spop`` operation. This could be useful if you# want to avoid duplicates in your start urls list. In this cases, urls must# be added via ``sadd`` command or you will get a type error from redis.# REDIS_START_URLS_AS_SET = False# Default start urls key for RedisSpider and RedisCrawlSpider.# REDIS_START_URLS_KEY = '%(name)s:start_urls' |
scrapy-redis示例
# DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
#
#
# from scrapy_redis.scheduler import Scheduler
# from scrapy_redis.queue import PriorityQueue
# SCHEDULER = "scrapy_redis.scheduler.Scheduler"
# SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.PriorityQueue' # 默认使用优先级队列(默认),其他:PriorityQueue(有序集合),FifoQueue(列表)、LifoQueue(列表)
# SCHEDULER_QUEUE_KEY = '%(spider)s:requests' # 调度器中请求存放在redis中的key
# SCHEDULER_SERIALIZER = "scrapy_redis.picklecompat" # 对保存到redis中的数据进行序列化,默认使用pickle
# SCHEDULER_PERSIST = True # 是否在关闭时候保留原来的调度器和去重记录,True=保留,False=清空
# SCHEDULER_FLUSH_ON_START = False # 是否在开始之前清空 调度器和去重记录,True=清空,False=不清空
# SCHEDULER_IDLE_BEFORE_CLOSE = 10 # 去调度器中获取数据时,如果为空,最多等待时间(最后没数据,未获取到)。
# SCHEDULER_DUPEFILTER_KEY = '%(spider)s:dupefilter' # 去重规则,在redis中保存时对应的key
# SCHEDULER_DUPEFILTER_CLASS = 'scrapy_redis.dupefilter.RFPDupeFilter'# 去重规则对应处理的类
#
#
#
# REDIS_HOST = '10.211.55.13' # 主机名
# REDIS_PORT = 6379 # 端口
# # REDIS_URL = 'redis://user:pass@hostname:9001' # 连接URL(优先于以上配置)
# # REDIS_PARAMS = {} # Redis连接参数 默认:REDIS_PARAMS = {'socket_timeout': 30,'socket_connect_timeout': 30,'retry_on_timeout': True,'encoding': REDIS_ENCODING,})
# # REDIS_PARAMS['redis_cls'] = 'myproject.RedisClient' # 指定连接Redis的Python模块 默认:redis.StrictRedis
# REDIS_ENCODING = "utf-8" # redis编码类型 默认:'utf-8'
配置文件
import scrapy class ChoutiSpider(scrapy.Spider):
name = "chouti"
allowed_domains = ["chouti.com"]
start_urls = (
'http://www.chouti.com/',
) def parse(self, response):
for i in range(0,10):
yield
爬虫文件
scrapy-redis组件的使用的更多相关文章
- Scrapy+redis实现分布式爬虫
概述 什么是分布式爬虫 需要搭建一个由n台电脑组成的机群,然后在每一台电脑中执行同一组程序,让其对同一网络资源进行联合且分布的数据爬取. 原生Scrapy无法实现分布式的原因 原生Scrapy中调度器 ...
- scrapy 基础组件专题(八):scrapy-redis 框架分析
scrapy-redis简介 scrapy-redis是scrapy框架基于redis数据库的组件,用于scrapy项目的分布式开发和部署. 有如下特征: 分布式爬取 您可以启动多个spider工 ...
- 基于async/non-blocking高性能redis组件库BeetleX.Redis
BeetleX.Redis是基于async/non-blocking模式实现的高性能redis组件库,组件支持redis基础指令集,并封装更简便的List,Hashset和Subscribe操作.除了 ...
- Node.js与Sails~redis组件的使用
有段时间没写关于NodeJs的文章了,今天也是为了解决高并发的问题,而想起了这个东西,IIS的站点在并发量达到200时有了一个瓶颈,于是想到了这个对高并发支持比较好的框架,nodeJs在我之前写出一些 ...
- laravel集成workerman,使用异步mysql,redis组件时,报错EventBaseConfig::FEATURE_FDS not supported on Windows
由于laravel项目中集成了workerman,因业务需要,需要使用异步的mysql和redis组件. composer require react/mysql composer require c ...
- 基于Python,scrapy,redis的分布式爬虫实现框架
原文 http://www.xgezhang.com/python_scrapy_redis_crawler.html 爬虫技术,无论是在学术领域,还是在工程领域,都扮演者非常重要的角色.相比于其他 ...
- 新生命Redis组件(.Net Core 开源)
NewLife.Redis 是一个Redis客户端组件,以高性能处理大数据实时计算为目标.Redis协议基础实现Redis/RedisClient位于X组件,本库为扩展实现,主要增加列表结构.哈希结构 ...
- 【分布式架构】--- 基于Redis组件的特性,实现一个分布式限流
分布式---基于Redis进行接口IP限流 场景 为了防止我们的接口被人恶意访问,比如有人通过JMeter工具频繁访问我们的接口,导致接口响应变慢甚至崩溃,所以我们需要对一些特定的接口进行IP限流,即 ...
- scrapy 基础组件专题(九):scrapy-redis 源码分析
下面我们来看看,scrapy-redis的每一个源代码文件都实现了什么功能,最后如何实现分布式的爬虫系统: connection.py 连接得配置文件 defaults.py 默认得配置文件 dupe ...
- scrapy 基础组件专题(七):scrapy 调度器、调度器中间件、自定义调度器
一.调度器 配置 SCHEDULER = 'scrapy.core.scheduler.Scheduler' #表示scrapy包下core文件夹scheduler文件Scheduler类# 可以通过 ...
随机推荐
- nodejs路径处理方法和绝对路径
1. 路径处理方法 __dirname 表示当前文件所在的目录的绝对路径__filename 表示当前文件的绝对路径module.filename ==== __filename 等价process. ...
- 51nod1199:Money out of Thin Air(线段树)
按dfs序一个一个加入线段树,可以让任何一颗子树的节点在线段树中连续,于是就可以用线段树维护整棵树了 和树剖的思想是一样的,大概一眼就看出来了,但是写了两个半天(躺 总结:记住以后写完数据结构或者数字 ...
- pandas模块(数据分析)------dataframe
DataFrame DataFrame是一个表格型的数据结构,含有一组有序的列,是一个二维结构. DataFrame可以被看做是由Series组成的字典,并且共用一个索引. 一.生成方式 import ...
- opencv学习---打开摄像头检测个人头像
opencv中具有检测人体各部分的级联分类器,在opencv文件夹里面的sources/data/haarcascades里面. 这里要选择的是能够检测人体头像的还有检测眼睛的级联分类器的文件. 它们 ...
- hdoj 1299 Diophantus of Alexandria
hdoj 1299 Diophantus of Alexandria 链接:http://acm.hdu.edu.cn/showproblem.php?pid=1299 题意:求 1/x + 1/y ...
- 【Android】Android之USB
[转载请注明出处] 首先介绍一个概念:USB Host and Accessory Android通过两种模式支持一系列的USB外围设备和Android USB附件(实现了Android附件协议的硬件 ...
- java主线程捕获子线程中的异常
本文主要参考:<think in java> 好,下面上货. 正常情况下,如果不做特殊的处理,在主线程中是不能够捕获到子线程中的异常的. 例如下面的情况. package com.xuey ...
- (转) jsp学习笔记
fromhttp://www.cnblogs.com/tao975/p/4445070.html 什么是JSP JSP的优势 JSP的劣势 JSP与PHP的比较 JSP工作原理 JSP的九大内置对象 ...
- vijos 1655 萌萌的糖果博弈 博弈
背景 用糖果来引诱小朋友学习是最常用的手法,绵羊爸爸就是用糖果来引诱萌萌学习博弈的. 描述 他把糖果分成了两堆,一堆有A粒,另一堆有B粒.他让萌萌和他一起按照下面的规则取糖果:每次可以任意拿走其中一堆 ...
- CentOS查看系统版本号
命令:cat /etc/redhat-release [elsearch@localhost data]$ cat /etc/redhat-release Red Hat Enterprise Lin ...