Python 图像处理 OpenCV (6):图像的阈值处理

前文传送门:
「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」
「Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理」
「Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间」
「Python 图像处理 OpenCV (5):图像的几何变换」
图像的阈值
看到这个词可能大家都很懵,为啥在图像处理里面还会有阈值。
图像的阈值处理用大白话讲就是将图像转化为二值图像(黑白图),目的是用来提取图像中的目标物体,将背景和噪声区分开(可以近似的认为除了目标全是噪声)。
通常会设定一个阈值 T ,通过 T 将图像的像素划分为两类:大于 T 的像素群和小于 T 的像素群。
首先可以先将图像转化为灰度图像,因为在灰度图像中,每个像素都只有一个灰度值用来表示当前像素的亮度。
接下来二值化处理可以将图像中的像素划分为两类颜色,一种是大于阈值 T 的,另一种是小于阈值 T 的。
比如最常见的二值图像:
当灰度值小于阈值 T 的时候,可以将其像素设置为 0 ,表示为黑色。
当灰度值大于阈值 T 的时候,可以将其像素设置为 255 ,表示为白色。
在 OpenCV 中,为我们提供了阈值函数 threshold() 来帮助我们实现二值图像的处理。
函数如下:
retval, dst = threshold(src, thresh, maxval, type, dst=None)
- retval: 阈值
- dst: 处理后的图像
- src: 原图像
- thresh: 阈值
- maxval: 最大值
- type: 处理类型
常用的 5 中处理类型如下:
- cv.THRESH_BINARY: 二值处理
- cv.THRESH_BINARY_INV: 反二值处理
- cv.THRESH_TRUNC: 截断阈值化
- cv.THRESH_TOZERO: 阈值化为 0
- cv.THRESH_TOZERO_INV: 反阈值化为 0
接下来这几种处理类型有啥不同,我们一个一个来看。
二值处理
这种二值处理方式最开始需要选定一个阈值 T ,从 0 ~ 255 之间,我这里选择出于中间的那个数 127 。
接下来的处理规则就是这样的:
- 大于等于 127 的像素点的灰度值设定为最大值,也就是 255 白色
- 小于 127 的像素点的灰度值设定为 0 ,也就是黑色
接下来开始写代码,看我们的马里奥同学(不知道你们还记不记得我们的马里奥同学):
import cv2 as cv
src = cv.imread("maliao.jpg")
# BGR 图像转灰度
gray_img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
# 二值图像处理
r, b = cv.threshold(gray_img, 127, 255, cv.THRESH_BINARY)
# 显示图像
cv.imshow("src", src)
cv.imshow("result", b)
# 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

反二值处理
这种方式和上面的二值处理非常相似,只是把处理规则给反了一下:
- 大于等于 127 的像素点的灰度值设定为 0 ,也就是白色
- 小于 127 的像素点的灰度值设定为最大值,也就是 255 白色
完整代码如下:
import cv2 as cv
src = cv.imread("maliao.jpg")
# BGR 图像转灰度
gray_img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
# 二值图像处理
r, b = cv.threshold(gray_img, 127, 255, cv.THRESH_BINARY_INV)
# 显示图像
cv.imshow("src", src)
cv.imshow("result", b)
# 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

从图像上可以看到,颜色和上面的二值图像正好相反,大部分的位置都变成了白色。
截断阈值化
这种方法还是需要先选定一个阈值 T ,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变。
完整代码如下:
import cv2 as cv
src = cv.imread("maliao.jpg")
# BGR 图像转灰度
gray_img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
# 二值图像处理
r, b = cv.threshold(gray_img, 127, 255, cv.THRESH_TRUNC)
# 显示图像
cv.imshow("src", src)
cv.imshow("result", b)
# 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

这种方式实际上是把图片比较亮的像素处理成为阈值,其他部分保持不变。
阈值化为 0
这种方式还是需要先选定一个阈值 T ,将小于 T 的像素点设置为 0 黑色,其他的保持不变。
完整代码如下:
import cv2 as cv
src = cv.imread("maliao.jpg")
# BGR 图像转灰度
gray_img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
# 二值图像处理
r, b = cv.threshold(gray_img, 127, 255, cv.THRESH_TOZERO)
# 显示图像
cv.imshow("src", src)
cv.imshow("result", b)
# 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

这个方法是亮的部分不改,把比较暗的部分修改为 0 。
反阈值化为 0
这个和前面的反二值图像很像,同样是反阈值化为 0 ,将大于等于 T 的像素点变为 0 ,其余保持不变。
完整代码如下:
import cv2 as cv
src = cv.imread("maliao.jpg")
# BGR 图像转灰度
gray_img = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
# 二值图像处理
r, b = cv.threshold(gray_img, 127, 255, cv.THRESH_TOZERO_INV)
# 显示图像
cv.imshow("src", src)
cv.imshow("result", b)
# 等待显示
cv.waitKey(0)
cv.destroyAllWindows()

这个方法是暗的部分不改,把比较亮的部分修改为 0 。
全家福
接下来还是给这几种阈值处理后的图像来个全家福,让大家能有一个直观的感受,代码我也给出来,如下:
import cv2 as cv
import matplotlib.pyplot as plt
# 读取图像
img=cv.imread('maliao.jpg')
lenna_img = cv.cvtColor(img,cv.COLOR_BGR2RGB)
gray_img=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# 阈值化处理
ret1, thresh1=cv.threshold(gray_img, 127, 255, cv.THRESH_BINARY)
ret2, thresh2=cv.threshold(gray_img, 127, 255, cv.THRESH_BINARY_INV)
ret3, thresh3=cv.threshold(gray_img, 127, 255, cv.THRESH_TRUNC)
ret4, thresh4=cv.threshold(gray_img, 127, 255, cv.THRESH_TOZERO)
ret5, thresh5=cv.threshold(gray_img, 127, 255, cv.THRESH_TOZERO_INV)
# 显示结果
titles = ['Gray Img','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [gray_img, thresh1, thresh2, thresh3, thresh4, thresh5]
# matplotlib 绘图
for i in range(6):
plt.subplot(2, 3, i+1), plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()

示例代码
如果有需要获取源码的同学可以在公众号回复「OpenCV」进行获取。
参考
https://blog.csdn.net/Eastmount/article/details/83548652
Python 图像处理 OpenCV (6):图像的阈值处理的更多相关文章
- Python 图像处理 OpenCV (14):图像金字塔
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (15):图像轮廓
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (16):图像直方图
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 图像属性 图像 ...
- Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (5):图像的几何变换
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (7):图像平滑(滤波)处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (9):图像处理形态学开运算、闭运算以及梯度运算
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (10):图像处理形态学之顶帽运算与黑帽运算
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
随机推荐
- Windows基础学习
0x01 常用的端口 HTTP协议代理服务器常用端口号:80/8080/3128/8081/9098SOCKS代理协议服务器常用端口号:1080FTP(文件传输)协议代理服务器常用端口号:21Teln ...
- 题解 P4296 【[AHOI2007]密码箱】
由题意有 \(x^2\equiv 1\;mod\;n\) 对题目的公式进行变形 \(x^2-1=k\times n\) \((x+1)(x-1)=k\times n\) 由唯一分解定理,我们构造\(a ...
- Appium自动化(9) - appium元素定位的快速入门
如果你还想从头学起Appium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1693896.html 快速入门栗子:boss直聘 app ...
- 【Django】rest_framework 序列化自定义替换返回值
# 序列化设置 class PagerSerialiser(serializers.ModelSerializer): name = serializers.CharField(source=&quo ...
- MySQL索引及查询优化
mysql 索引 1.索引介绍 索引按数据结构分可分为哈希表,有序数组,搜索树,跳表: 哈希表适用于只有等值查询的场景 有序数组适用于有等值查询和范围查询的场景,但有序数组索引的更新代价很大,所以最好 ...
- nginx之启停操作及配置文件语法检测
nginx的启停操作 ----nginx 启动 ----nginx -s stop 停止 ----nginx -s reload 重新加载 nginx -t 修改配置文件之后进行语法检验
- 手写一个简版 asp.net core
手写一个简版 asp.net core Intro 之前看到过蒋金楠老师的一篇 200 行代码带你了解 asp.net core 框架,最近参考蒋老师和 Edison 的文章和代码,结合自己对 asp ...
- Linux上,最常用的一批命令解析【10年精选】
原文链接:https://mp.weixin.qq.com/s/QkqHexs_kOgy_5OwbwyFww 建议点击原文链接查看 不同平台linux客户端连接工具分享: windos终端神器:SSH ...
- Mybatis 强大的结果集映射器resultMap
1. 前言 resultMap 元素是 MyBatis 中最重要最强大的元素.它可以让你从 90% 的 JDBC ResultSets 数据提取代码中解放出来,并在一些情形下允许你进行一些 JDBC ...
- Java——去除字符串中的中文
import java.util.regex.Matcher; import java.util.regex.Pattern; public class RemoveStrChinese { priv ...