今盒子里有n个小球,A、B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断。

我们约定:

每个人从盒子中取出的球的数目必须是:1,3,7或者8个。

轮到某一方取球时不能弃权!

A先取球,然后双方交替取球,直到取完。

被迫拿到最后一个球的一方为负方(输方)

请编程确定出在双方都不判断失误的情况下,对于特定的初始球数,A是否能赢?

程序运行时,从标准输入获得数据,其格式如下:

先是一个整数n(n<100),表示接下来有n个整数。然后是n个整数,每个占一行(整数<10000),表示初始球数。

程序则输出n行,表示A的输赢情况(输为0,赢为1)。

例如,用户输入:







10

18

则程序应该输出:

0

1

1

0

注意:

请仔细调试!您的程序只有能运行出正确结果的时候才有机会得分!

在评卷时使用的输入数据与试卷中给出的实例数据可能是不同的。

package com.liu.ex6;

import java.util.Scanner;

public class Main {

    public static int[] value = new int[10001];

    public void getValue() {
for(int i = 9;i < 10001;i++) {
if(value[i - 1] == 0)
value[i] = 1; if(value[i - 3] == 0)
value[i] = 1; if(value[i - 7] == 0)
value[i] = 1; if(value[i - 8] == 0)
value[i] = 1;
}
} public void printResult(int[] A) {
getValue();
for(int i = 0;i < A.length;i++)
System.out.println(value[A[i]]);
return;
} public static void main(String[] args) {
Main test = new Main();
value[2] = 1;
value[4] = 1;
value[6] = 1;
value[8] = 1;
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] A = new int[n];
for(int i = 0;i < n;i++)
A[i] = in.nextInt();
test.printResult(A);
}
}

package 第二次模拟; import java.util.ArrayList;
import java.util.Scanner; public class Demo7取球 {
//用a数组表示b赢了的情况,b赢不了就是赢
static boolean[] a = new boolean[100000]; public static void main(String[] args) {
a[2] = true;//a赢就是true
a[4] = true;
a[6] = true;
a[8] = true;
ArrayList<Integer> list = new ArrayList<Integer>();
//ArrayList<Integer> Output = new ArrayList<Integer>();
int max = -1,n=0,temp;
Scanner sc = new Scanner(System.in);
//输入数字的数量
n = sc.nextInt();
for (int i = 0; i < n; i++) {
//每次输入的数字
temp=sc.nextInt();
// max= max<temp?temp:max;
list.add(temp);
}
sc.close(); for (int i = 0; i < n; i++) {
//递归省空间费时间
System.out.println(f(list.get(i))?1:0); } }
public static boolean f(int i){
if(i<9){
return a[i];
}
//上一次是输的的话,这一次就是赢,取反,只要有一种方法赢了,我就能赢
return (!f(i - 1) || !f(i - 3) ||!f(i - 7) || !f(i - 8)); } }

java实现取球博弈的更多相关文章

  1. java算法 第七届 蓝桥杯B组(题+答案) 9.取球博弈

    9.取球博弈  (程序设计) 两个人玩取球的游戏.一共有N个球,每人轮流取球,每次可取集合{n1,n2,n3}中的任何一个数目.如果无法继续取球,则游戏结束.此时,持有奇数个球的一方获胜.如果两人都是 ...

  2. java实现第七届蓝桥杯取球博弈

    题目9.取球博弈 取球博弈 两个人玩取球的游戏. 一共有N个球,每人轮流取球,每次可取集合{n1,n2,n3}中的任何一个数目. 如果无法继续取球,则游戏结束. 此时,持有奇数个球的一方获胜. 如果两 ...

  3. 2016蓝桥杯"取球博弈"问题

    较难,网上有能得出正确结果的代码,但是读了一下,像是拼凑出的结果,逻辑不通,代码和注释不符 参考网上代码写了一版,结构相对清晰,注释比较详细 题目很长: 两个人玩取球的游戏.一共有N个球,每人轮流取球 ...

  4. 2012年第三届蓝桥杯C/C++程序设计本科B组省赛 取球博弈

    2012年第三届蓝桥杯C/C++程序设计本科B组省赛 取球博弈 题目描述 **取球博弈 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并 ...

  5. java实现取球游戏

    /* 今盒子里有 n 个小球,A.B 两人轮流从盒中取球,每个人都可以看到另一个人取了多少个, 也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断. 我们约定: 每个人从盒子中取出的球的 ...

  6. 取球游戏_nyoj_518(博弈-蓝桥杯原题).java

    取球游戏 时间限制: 1000 ms  |  内存限制: 65535 KB 难度: 2   描述 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下 ...

  7. java实现取球类的博弈问题

    1.问题描述: 今盒子中有n个小球,A,B两人轮流从盒子中取球,每个人都可以看到对方的取球数目. 规定如下: 取球只能取1,3,7,8四种情况.如果没有球取了,则输了.规定A先取球,给定初始球的数目, ...

  8. 蓝桥杯 第三届C/C++预赛真题(10) 取球游戏(博弈)

    今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并且两人都很聪明,不会做出错误的判断. 我们约定: 每个人从盒子中取出的球的数目必须是:1 ...

  9. nyoj_518_取球游戏_201404161738

    取球游戏 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个 ...

随机推荐

  1. ASP.NET Core Blazor 初探之 Blazor Server

    上周初步对Blazor WebAssembly进行了初步的探索(ASP.NET Core Blazor 初探之 Blazor WebAssembly).这次来看看Blazor Server该怎么玩. ...

  2. 比AtomicLong更优秀的LongAdder确定不来了解一下吗?

    前言 思维导图.png 文章中所有高清无码图片在公众号号回复: 图片666 即可查阅, 可直接关注公众号:壹枝花算不算浪漫 最近阿里巴巴发布了Java开发手册(泰山版) (公众号回复: 开发手册 可收 ...

  3. struts2 进阶--异常捕获机制

    在SpringMvc中有自己的异常处理机制,struts2当然会有此功能,主要是在struts.xml中配置: <bean type="com.opensymphony.xwork2. ...

  4. zabbix email报警

    把email 报警整了一遍 . 1 ,先把mail 系统整好. 我用的是sendmail yum install -y sendmail sendmail-cf vim /etc/mail/local ...

  5. 微信小程序前端与myeclipse的数据交换过程(SSH)

    这是我个人探究微信小程序前端与后端之间的数据交换的过程,再结合个人所学的SSH框架, 编程工具用myEclipse2014工具.当然,前提是后台的项目要部署到tomcat服务器上才行, 然后总结了从后 ...

  6. 异步http接口调用库:httpx

    谈到http接口调用,Requests大家并不陌生,例如,robotframework-requests.HttpRunner等HTTP接口测试库/框架都是基于它开发.这里将介绍另一款http接口测试 ...

  7. base64编码的字符串(含有中文) 前端解码

    base64编码的字符串(含有中文) 前端解码 https://xue5602.github.io/2018/12/19/atob%E8%A7%A3%E7%A0%81utf-8%E5%AD%97%E7 ...

  8. java中的上下问解释以及ServletContext介绍使用

    摘抄的:所谓上下文,它是用来存储系统的一些初始化信息,例如在jboss中通过配置文件指定了数据源,那么在jboss启动的时候就把这个文件的相关信息上下文中,于是在我们使用这个数据源的时候,就需要先获得 ...

  9. PAT-1135 Is It A Red-Black Tree(二叉查找树的创建和遍历)

    There is a kind of balanced binary search tree named red-black tree in the data structure. It has th ...

  10. 仙人掌图判定及求直径HDU3594 BZOJ1023

    https://wenku.baidu.com/view/ce296043192e45361066f575.html   //仙人掌图基础知识3个判定条件 http://blog.csdn.net/y ...