http://poj.org/problem?id=3259

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input


Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.
 

题目大意:

时空旅行,前m条路是双向的,旅行时间为正值,w条路是虫洞,单向的,旅行时间是负值,也就是能回到过去。求从一点出发,判断能否在”过去“回到出发点,即会到出发点的时间是负的。

解题思路:

裸的负权最短路问题,SPFA Bellman-Ford解决。

 #include<iostream>
#include<cstdio>
using namespace std;
#define INF 0x3f3f3f3f
#define N 10100
int nodenum, edgenum, w, original=; //点,边,起点 typedef struct Edge //边
{
int u;
int v;
int cost;
}Edge;//边的数据结构 Edge edge[N];//边 int dis[N];//距离 bool Bellman_Ford()
{
for(int i = ; i <= nodenum; ++i) //初始化
dis[i] = (i == original ? : INF);
int F=;
for(int i = ; i <= nodenum - ; ++i)//进行nodenum-1次的松弛遍历
{
for(int j = ; j <= edgenum*+w; ++j)
{
if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~)
{
dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;
F=;
}
}
if(!F)
break;
}
//与迪杰斯特拉算法类似,但不是贪心!
//并没有标记数组
//本来松弛已经结束了
//但是因为由于负权环的无限松弛性
bool flag = ; //判断是否含有负权回路
//如果存在负权环的话一定能够继续松弛
for(int i = ; i <= edgenum*+w; ++i)
{
if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)
{
flag = ;
break;
}
}
//只有在负权环中才能再松弛下去
return flag;
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{ scanf("%d %d %d", &nodenum, &edgenum, &w); for(int i = ; i <= *edgenum; i+=)//加上道路,双向边
{
scanf("%d %d %d", &edge[i].u, &edge[i].v, &edge[i].cost);
edge[i+].u=edge[i].v;
edge[i+].v=edge[i].u;
edge[i+].cost=edge[i].cost;
}
for(int i =*edgenum+; i <= *edgenum+w; i++)//加上虫洞,单向边,负权
{
scanf("%d %d %d", &edge[i].u, &edge[i].v, &edge[i].cost);
edge[i].cost=-edge[i].cost;
}
if(Bellman_Ford())//没有负环
printf("NO\n");
else
printf("YES\n");
}
return ;
}
 
 
 

poj-3259 Wormholes(无向、负权、最短路之负环判断)的更多相关文章

  1. POJ 3259 Wormholes 虫洞(负权最短路,负环)

    题意: 给一个混合图,求判断是否有负环的存在,若有,输出YES,否则NO.有重边. 思路: 这是spfa的功能范围.一个点入队列超过n次就是有负环了.因为是混合图,所以当你跑一次spfa时发现没有负环 ...

  2. poj 3259 Wormholes : spfa 双端队列优化 判负环 O(k*E)

    /** problem: http://poj.org/problem?id=3259 spfa判负环: 当有个点被松弛了n次,则这个点必定为负环中的一个点(n为点的个数) spfa双端队列优化: 维 ...

  3. [ACM] POJ 3259 Wormholes (bellman-ford最短路径,推断是否存在负权回路)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29971   Accepted: 10844 Descr ...

  4. ACM: POJ 3259 Wormholes - SPFA负环判定

     POJ 3259 Wormholes Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu   ...

  5. POJ 3259 Wormholes(最短路径,求负环)

    POJ 3259 Wormholes(最短路径,求负环) Description While exploring his many farms, Farmer John has discovered ...

  6. 最短路(Bellman_Ford) POJ 3259 Wormholes

    题目传送门 /* 题意:一张有双方向连通和单方向连通的图,单方向的是负权值,问是否能回到过去(权值和为负) Bellman_Ford:循环n-1次松弛操作,再判断是否存在负权回路(因为如果有会一直减下 ...

  7. poj - 3259 Wormholes (bellman-ford算法求最短路)

    http://poj.org/problem?id=3259 农夫john发现了一些虫洞,虫洞是一种在你到达虫洞之前把你送回目的地的一种方式,FJ的每个农场,由n块土地(编号为1-n),M 条路,和W ...

  8. poj 3259 Wormholes 判断负权值回路

    Wormholes Time Limit: 2000 MS Memory Limit: 65536 KB 64-bit integer IO format: %I64d , %I64u   Java ...

  9. POJ 3259 Wormholes Bellman_ford负权回路

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  10. POJ 3259 Wormholes(负权环路)

    题意: 农夫约翰农场里发现了很多虫洞,他是个超级冒险迷,想利用虫洞回到过去,看再回来的时候能不能看到没有离开之前的自己,农场里有N块地,M条路连接着两块地,W个虫洞,连接两块地的路是双向的,而虫洞是单 ...

随机推荐

  1. 201812-2 小明放学 Java

    思路: 红绿灯每种灯亮划分区间,在[0,r]区间内红灯亮,在(r,g+r]区间内绿灯亮,在(r+g,r+g+y]区间内黄灯亮,在划分好区间后只需要判断当小明到达红绿灯时是哪个灯在亮,就可以判断出通过红 ...

  2. (递归)P1192 台阶问题

    题解: 这其实是变相的斐波那契,观察下列等式: //k=2 : 1 2 3 5 8 13 21 34...... //k=3 : 1 2 4 7 13 24 44 81... //k=4 : 1 2 ...

  3. maven项目集成Quartz定时任务框架,实现批处理功能

    一.Quartz简介 主要做定时任务,即:在指定时间点或时间段,执行某项任务,可设置执行次数.时间间隔等. 二.Springcloud简介 对比传统的.庞大的.复杂的.以ssm或ssh为框架的web项 ...

  4. 教你如何使用JavaScript入门

    JavaScript简介   JavaScript是NetScape公司为Navigator浏览器开发的,是web前端卸载HTML文件中的一种脚本语言,能实现网页内容的交互显示.当用户在客户端显示该网 ...

  5. POJ 3013 SPFA算法,邻接表的使用

    Big Christmas Tree Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 19029   Accepted: 4 ...

  6. mint linux的几个问题

    刚开机登录时, 键盘不停的输入同一个字符 发现在虚拟机里安装的系统没有问题, 因此怀疑配置有冲突, 新建一个用户果然能解决问题 解决方法: 把 主目录下, 隐藏的配置目录删除, 重新登录后再配置. 4 ...

  7. Java并发分析—ConcurrentHashMap

    LZ在 https://www.cnblogs.com/xyzyj/p/6696545.html 中简单介绍了List和Map中的常用集合,唯独没有CurrentHashMap.原因是CurrentH ...

  8. 向mysql数据库中插入数据时显示“Duplicate entry '1′ for key ‘PRIMARY' ”错误

    错误情况如题,出现这个错误的原因十分简单: 很明显,这是主键的问题. 在一张数据表中是不能同时出现多个相同主键的数据的 这就是错误的原因,解决的方法: 1.可以将这张表设置成无主键(mysql支持,其 ...

  9. mysql查看整库个表详情

    information_schema.tables字段说明 字段 含义 Table_catalog 数据表登记目录 Table_schema 数据表所属的数据库名 Table_name 表名称 Tab ...

  10. 微信请求参数生成SHA1签名

    package com.dhht.wechat.util; import com.alibaba.fastjson.JSON;import com.alibaba.fastjson.JSONObjec ...