安妮 乾明 发自 凹非寺 
本文转载自量子位(QbitAI)

实习生又立功了!

这一次,亮出好成绩的实习生来自地平线,是一名华中科技大学的硕士生。

他作为第一作者完成的研究Mask Scoring R-CNN,在COCO图像实例分割任务上超越了何恺明的Mask R-CNN,拿下了计算机视觉顶会CVPR 2019的口头报告。

也就是说,它从5000多篇投稿中脱颖而出,成为最顶尖的5.6%

无论搭配的基干怎么变,表现一直稳定,总是比Mask R-CNN好一点。

可谓青出于蓝而胜于蓝。

并且,他们的算法已经开源了(传送门在文末)。

给蒙版打分

Mask R-CNN,一种简洁、灵活的实例分割框架,大神何恺明的“拿手作”之一。自2017年一出场就惊艳了四方研究者,何恺明也借此一举拿下ICCV 2017最佳论文奖。

 何恺明

新鲜出炉的Mask Scoring R-CNN,性能是怎样超越前辈的呢?

关键就在名字里的“打分”(Scoring)。这篇论文中,研究人员提出了一种给算法的“实例分割假设”打分的新方法。这个分数打得是否准确,就会影响实例分割模型的性能。

而Mask R-CNN等前辈,用的打分方法就不太合适。

这些模型在实例分割任务里,虽然输出结果是一个蒙版,但打分却是和边界框目标检测共享的,都是针对目标区域分类置信度算出来的分数。

这个分数,和图像分割蒙版的质量可未必一致,用来评价蒙版的质量,可能就会出偏差。

于是,这篇CVPR 2019论文就提出了一种新的打分方法:给蒙版打分,他们称之为蒙版得分(mask score)。

 MS R-CNN架构

Mask Scoring R-CNN中提出的计分方式很简单:不仅仅直接依靠检测得到的分类算分,而且还让模型单独学一个针对蒙版的得分规则:MaskIoU head

MaskIoU head是在经典评估指标AP(平均正确率)启发下得到的,会拿预测蒙版与物体特征进行对比。MaskIoU head同时接收蒙版head的输出与ROI的特征(Region of Interest)作为输入,用一种简单的回归损失进行训练。

最后,同时考虑分类得分与蒙版的质量得分,就可以去评估算法质量了。

评测方法公平公正,实例分割模型性能自然也上去了。

实验证明,在挑战COCO benchmark时,在用MS R-CNN的蒙版得分评估时,在不同基干网路上,AP始终提升近1.5%。

优于Mask R-CNN

下面的表格,是COCO 2017测试集(Test-Dev set)上MS R-CNN和其他实例分割方法的成绩对比。

无论基干网络是纯粹的ResNet-101,还是用了DCN、FPN,MS R-CNN的AP成绩都比Mask R-CNN高出一点几个百分点。

在COCO 2017验证集上,MS R-CNN的得分也优于Mask R-CNN:

作者是谁?

第一作者,名为黄钊金,华中科技大学的硕士生,师从华中科技大学电信学院副教授王兴刚,王兴刚也是这篇论文的作者之一。

其他的作者,分别是地平线的Chang Huang、Yongchao Gong和Lichao Huang。

如果你对这项研究感兴趣,请收好传送门:

Mask Scoring R-CNN论文

https://arxiv.org/abs/1903.00241

GitHub地址
https://github.com/zjhuang22/maskscoring_rcnn

Mask R-CNN的其他优化思路

在此之前,也有人提出了优化Mask R-CNN的思路。

比如,香港中文大学、北京大学、商汤科技、腾讯优图在CVPR 2018发表的一篇论文,提出了一个名为PANet的实例分割框架。

优化了Mask R-CNN中的信息传播,通过加速信息流、整合不同层级的特征,提高了生成预测蒙版的质量。

在未经大批量训练的情况下,就拿下了COCO 2017挑战赛实例分割任务的冠军。

论文地址:

Path Aggregation Network for Instance Segmentation
https://arxiv.org/abs/1803.01534

代码地址:
https://github.com/ShuLiu1993/PANet

---End---

想要了解最新最快最好的论文速递、开源项目和干货资料,欢迎加入CVer学术交流群。涉及图像分类、目标检测、图像分割、人脸检测&识别、目标跟踪、GANs、学术竞赛交流、Re-ID、风格迁移、医学影像分析、姿态估计、OCR、SLAM、场景文字检测&识别和超分辨率等方向。

扫码进群

▲长按关注我们

麻烦给我一个好看

文章转载自公众号

CVPR2019 | 超越Mask R-CNN!华科开源图像实例分割新方法MS R-CNN的更多相关文章

  1. 手把手教你使用LabVIEW实现Mask R-CNN图像实例分割

    前言 前面给大家介绍了使用LabVIEW工具包实现图像分类,目标检测,今天我们来看一下如何使用LabVIEW实现Mask R-CNN图像实例分割. 一.什么是图像实例分割? 图像实例分割(Instan ...

  2. 图像实例分割:CenterMask

    图像实例分割:CenterMask CenterMask: single shot instance segmentation with point representation 论文链家: http ...

  3. 谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN

    谷歌大脑提出:基于NAS的目标检测模型NAS-FPN,超越Mask R-CNN 朱晓霞发表于目标检测和深度学习订阅 235 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等价格 ...

  4. 图像语义分割出的json文件和原图,用plt绘制图像mask

    1.弱监督 由于公司最近准备开个新项目,用深度学习训练个能够自动标注的模型,但模型要求的训练集比较麻烦,,要先用ffmpeg从视频中截取一段视频,在用opencv抽帧得到图片,所以本人只能先用语义分割 ...

  5. 开源图像标注工具labelme的安装使用及汉化

    一 LabelMe简介 labelme是麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发的图像标注工具,人们可以使用该工具创建定制化标注任务或执行图像标注,项目源代码已经开源. 项目开 ...

  6. OpenCV计算机视觉学习(2)——图像算术运算 & 掩膜mask操作(数值计算,图像融合,边界填充)

    在OpenCV中我们经常会遇到一个名字:Mask(掩膜).很多函数都使用到它,那么这个Mask到底是什么呢,下面我们从图像基本运算开始,一步一步学习掩膜. 1,图像算术运算 图像的算术运算有很多种,比 ...

  7. 为什么CNN能自动提取图像特征

    1.介绍 在大部分传统机器学习场景里,我们先经过特征工程等方法得到特征表示,然后选用一个机器学习算法进行训练.在训练过程中,表示事物的特征是固定的. 后来嘛,后来深度学习就崛起了.深度学习对外推荐自己 ...

  8. Tensorflow实现Mask R-CNN实例分割通用框架,检测,分割和特征点定位一次搞定(多图)

    Mask R-CNN实例分割通用框架,检测,分割和特征点定位一次搞定(多图)   导语:Mask R-CNN是Faster R-CNN的扩展形式,能够有效地检测图像中的目标,同时还能为每个实例生成一个 ...

  9. CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)

    CVPR目标检测与实例分割算法解析:FCOS(2019),Mask R-CNN(2019),PolarMask(2020)1. 目标检测:FCOS(CVPR 2019)目标检测算法FCOS(FCOS: ...

随机推荐

  1. 接口测试基础----postman、jmeter

    一,什么是接口 接口一般接口分两种: 系统对外接口:与外部系统对接的接口,用来获取或者传递数据给外部系统 系统内部接口:系统模块.方法之间用来获取或者传递数据的接口 二.接口分类 webservice ...

  2. 【LeetCode】226. 翻转二叉树

    题目 翻转一棵二叉树. 示例: 输入: 4 / \ 2 7 / \ / \ 1 3 6 9 输出: 4 / \ 7 2 / \ / \ 9 6 3 1 本题同[剑指Offer]面试题27. 二叉树的镜 ...

  3. Golang的类型转换实战案例

    Golang的类型转换实战案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.数据类型概述 基础数据类型概述,博主推荐阅读: 布尔型: https://www.cnblogs. ...

  4. Python练习题3

    1.九九乘法表 li = [1,2,3,4,5,6,7,8,9] for i in li: for j in li: if i >= j: print(i,'*',j,'=',i*j,end=& ...

  5. 九十、SAP中ALV事件之四,事件子例程的参数

    一.我们按照之前SAP说明里面的文字,定义好相关内容 二.上图代码对应的文档错了,重现截图一下 三.这3个子例程是不需要写调用语句PERFORM的,在SAP内部已经写好了.程序会自动根据名字找到需要调 ...

  6. UVALive 4287 SCC-Tarjan 加边变成强连通分量

    还是强连通分量的题目,但是这个题目不同的在于,问你最少要添加多少条有向边,使得整个图变成一个强连通分量 然后结论是,找到那些入度为0的点的数目 和 出度为0的点的数目,取其最大值即可,怎么证明嘛... ...

  7. JAVA作用域和排序算法介绍

    一.作用域 1.作用域的概念 所谓的作用域是指引用可以作用到的范围. 一个引用的作用域是从引用定义位置到包裹它的最近的大括号的结束位置.只有在作用域范围内才可以访问到引用,超出作用域无法访问引用. 定 ...

  8. Working Plan 优先队列+贪心

    题目链接:http://codeforces.com/gym/101987题目描述ICPC manager plans a new project which is to be carried out ...

  9. Python 简单统记Log 日记 下次用:python的内置logging模块 easy

    环境 win7  先来new一点log 日记   日记包含    "reason=", "error="  两个log级别 存放在D盘下得LOG目录下 先来 生 ...

  10. JavaScript(第十一天 9.24)

    Html(决定页面显示的数据)+CSS(决定页面的布局)+JS(和用户或者服务器交互.决定页面的行为) JS前端的编程语言,脚本语言,简单易学,基础是HTML+CSS 编译工具使用:vscode  s ...