hdu3397 Sequence operation

 #include <bits/stdc++.h>
using namespace std;
const int maxn = 1e6+;
struct node {
/// l,r表示当前结点区间范围[l,r]
int l, r;
/// val=0时为全0标志,表示区间[l,r]的值全为0
/// val=1时为全1标志,表示区间[l,r]的值全为1
/// val=-1时则代表无操作
/// xor为异或标志,表示区间[l,r]的值取异或操作
int val, Xor;
/// lmax_0表示区间[l,r]从左往右开始连续0的个数
/// rmax_0表示区间[l,r]从右往左开始连续0的个数
/// max_0表示当前区间最大连续0的个数
int lmax_0, rmax_0, max_0, sum_0;
int lmax_1, rmax_1, max_1, sum_1;
/// 得到当前区间长度
int len() { return r-l+; } /// 更新操作,val_代表01操作,xor_代表异或操作
void change(int val_, int Xor_) {
/// [l,r]全置为0
if (val_ == ) {
lmax_0 = rmax_0 = max_0 = sum_0 = len();
lmax_1 = rmax_1 = max_1 = sum_1 = ;
val = , Xor = ;
}
/// [l,r]全置为1
else if (val_ == ) {
lmax_0 = rmax_0 = max_0 = sum_0 = ;
lmax_1 = rmax_1 = max_1 = sum_1 = len();
val = , Xor = ;
}
/// [l,r]全异或
if (Xor_ == ) {
swap(lmax_0,lmax_1); swap(rmax_0,rmax_1);
swap(max_0,max_1); swap(sum_0,sum_1);
Xor ^= ;
}
}
}tree[maxn*];
int a[maxn];
void pushup(node &fa, node &ls, node &rs) {
/// 父节点的左边最长0串=左子树的左边最长0串
fa.lmax_0 = ls.lmax_0, fa.rmax_0 = rs.rmax_0;
fa.lmax_1 = ls.lmax_1, fa.rmax_1 = rs.rmax_1;
/// 父节点0的数量=左子树0的数量+右子树0的数量
fa.sum_0 = ls.sum_0+rs.sum_0;
fa.sum_1 = ls.sum_1+rs.sum_1;
/// 父节点最大连续0串等于左右子树里面中最大连续0串的最大值
/// 或者是左子树从右开始的0串+右子树从左开始的0串之和
fa.max_0 = max(max(ls.max_0,rs.max_0), ls.rmax_0+rs.lmax_0);
fa.max_1 = max(max(ls.max_1,rs.max_1), ls.rmax_1+rs.lmax_1); /// 如果左子树整串都为0串
if (ls.len() == ls.lmax_0) fa.lmax_0 += rs.lmax_0;
if (ls.len() == ls.lmax_1) fa.lmax_1 += rs.lmax_1;
if (rs.len() == rs.rmax_0) fa.rmax_0 += ls.rmax_0;
if (rs.len() == rs.rmax_1) fa.rmax_1 += ls.rmax_1;
}
void pushdown(int rt) {
if (tree[rt].val != - || tree[rt].Xor) {
tree[rt*].change(tree[rt].val,tree[rt].Xor);
tree[rt*+].change(tree[rt].val,tree[rt].Xor);
tree[rt].val = -, tree[rt].Xor = ;
}
}
void build(int rt, int l, int r) {
/// 结点初始化
tree[rt].l = l, tree[rt].r = r;
tree[rt].lmax_0 = tree[rt].rmax_0 = ;
tree[rt].lmax_1 = tree[rt].rmax_1 = ;
tree[rt].max_0 = tree[rt].max_1 = ;
tree[rt].sum_0 = tree[rt].sum_1 = ;
tree[rt].Xor = , tree[rt].val = -;
/// 如果是叶子结点
if (l == r) {
tree[rt].change(a[l],);
return;
}
int mid = (l+r)/;
build(rt*,l,mid);
build(rt*+,mid+,r);
pushup(tree[rt],tree[rt*],tree[rt*+]);
}
void update(int rt, int l, int r, int op) {
int L = tree[rt].l, R = tree[rt].r;
if (l <= L && R <= r) {
/// 根据op执行不同操作
if (op == || op == ) tree[rt].change(op,);
else if (op == ) tree[rt].change(-,);
return;
}
pushdown(rt);
int mid = (L+R)/;
if (mid >= l) update(rt*,l,r,op);
if (mid < r) update(rt*+,l,r,op);
pushup(tree[rt],tree[rt*],tree[rt*+]);
}
int query(int rt, int l, int r, int op) {
int L = tree[rt].l, R = tree[rt].r;
if (l <= L && R <= r) {
if (op == ) return tree[rt].sum_1;
else if (op == ) return tree[rt].max_1;
}
int mid = (L+R)/;
pushdown(rt);
if (r <= mid) return query(rt*,l,r,op);
else if (l > mid) return query(rt*+,l,r,op);
else {
int max1 = query(rt*,l,r,op);
int max2 = query(rt*+,l,r,op);
if (op == ) return max1+max2;
int max3 = min(tree[rt*].r-l+,tree[rt*].rmax_1)+min(r-tree[rt*+].l+,tree[rt*+].lmax_1);
return max(max(max1,max2),max3);
}
}
int main() {
int t; scanf("%d",&t);
while (t--) {
int n, m; scanf("%d%d",&n,&m);
for (int i = ; i < n; ++i)
scanf("%d",&a[i]);
build(,,n-);
while (m--) {
int op, a, b;
scanf("%d%d%d",&op,&a,&b);
if (op == || op == || op == ) update(,a,b,op);
else printf("%d\n",query(,a,b,op));
}
}
return ;
}

hdu3397 Sequence operation 线段树的更多相关文章

  1. hdu-3397 Sequence operation 线段树多种标记

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3397 题目大意: 0 a b表示a-b区间置为0 1 a b表示a-b区间置为1 2 a b表示a- ...

  2. Sequence operation(线段树区间多种操作)

    Sequence operation Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  3. hdu 3397 Sequence operation (线段树 区间合并 多重标记)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=3397 题意: 给你一串01串,有5种操作 0. 区间全部变为0 1.区间全部变为1 2.区间异或 3.询问 ...

  4. hdu 3397 Sequence operation 线段树

    题目链接 给出n个数, 每个数是0或1, 给5种操作, 区间变为1, 区间变为0, 区间0,1翻转, 询问区间内1的个数, 询问区间内最长连续1的个数. 需要将数组开成二维的, 然后区间0, 1翻转只 ...

  5. hdu 3397 Sequence operation 线段树 区间更新 区间合并

    题意: 5种操作,所有数字都为0或1 0 a b:将[a,b]置0 1 a b:将[a,b]置1 2 a b:[a,b]中的0和1互换 3 a b:查询[a,b]中的1的数量 4 a b:查询[a,b ...

  6. HDU 4893 Wow! Such Sequence! (线段树)

    Wow! Such Sequence! 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4893 Description Recently, Doge ...

  7. HDU 5828 Rikka with Sequence (线段树)

    Rikka with Sequence 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5828 Description As we know, Rik ...

  8. Codeforces Round #250 (Div. 1) D. The Child and Sequence(线段树)

    D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...

  9. Codeforces Round #350 (Div. 2) E. Correct Bracket Sequence Editor 线段树模拟

    E. Correct Bracket Sequence Editor   Recently Polycarp started to develop a text editor that works o ...

随机推荐

  1. git .gitignore不生效

    原因是.gitignore只能忽略那些原来没有被track的文件,如果某些文件已经被纳入了版本管理中,则修改.gitignore是无效的. 解决方法: 1.先把规则写好,然后把规则对应的文件删了,然后 ...

  2. Python logging 模块打印异常 exception

    logger.exception(sys.exc_info())

  3. JDK 15 JAVA 15的新特性展望

    目录 JEP 371: Hidden Classes JEP 372: 删除 Nashorn JavaScript Engine JEP 377: 新的垃圾回收器ZGC正式上线了 JEP 378: T ...

  4. 微软开放 Build 2020 免费注册

    微软已经开放 Build 2020 线上开发者会议注册,https://mybuild.microsoft.com/.Build 2020 会议将于 5 月 19 日至 20 日召开,核心内容都是围绕 ...

  5. Python下redis包安装

    找到Python的第三方包安装路径,在dos命令行中切换到该目录,输入: pip install redis 最后在Python解释器中即可.

  6. 开发AI+诊疗生发系统,「先锋汇美」借力人工智能辅助诊疗实现头皮医学检测...

    困扰年轻人的脱发问题萌生了新兴的产业链.36氪先前曾剖析过近来火热的植发市场,更多人则选择"防范于未然","头皮检测"服务备受关注.此前,人们对"头皮 ...

  7. ubuntu 14.04安装pycharm 社区版

    https://blog.csdn.net/u013733432/article/details/54425831 转载于:https://www.cnblogs.com/liu-shiliu/p/1 ...

  8. LinearLayout控件

    LinearLayout是线性布局控件,它包含的子控件将以横向或竖向的方式排列,按照相对位置来排列所有的widgets或者其他的containers,超过边界时,某些控件将缺失或消失.因此一个垂直列表 ...

  9. CF思维联系– CodeForces - 991C Candies(二分)

    ACM思维题训练集合 After passing a test, Vasya got himself a box of n candies. He decided to eat an equal am ...

  10. select函数的使用

    select函数是 I/O 复用中非常重要的一个函数,属于并发编程的.它能够监视我们需要监视的文件描述符的变化情况–读.写或者异常 1. 函数原型 #include <sys/select.h& ...