kafka的编程模型
1.kafka消费者编程模型
分区消费模型
组(group)消费模型
1.1.1.分区消费架构图,每个分区对应一个消费者。
1.1.2.分区消费模型伪代码描述
指定偏移量,用于从上次消费的地方开始消费.
提交offset ,java客户端会自动提交的集群,所以这一步可选。
1.2.1.组消费模型架构图
每个组都消费该topic的全量数据,一条消息会发给groupA和groupB.
1.2.2.组消费模型伪代码:
流数N:表示一个consumer组里面有几个consumer 实例,上例中组A创建2个流,组B创建4个流。
1.2.3.consumer分配算法
当kafka的分区个数大于组A里consumer实例个数时,怎么去分配,以下为分配步骤:
Partition消费模型更加灵活但是:
(1)需要自己处理各种异常情况;
(2)需要自己管理offset(以实现消息传递的其他语义);
Group消费模型更加简单,但是不灵活:
(1)不需要自己处理异常情况,不需要自己管理offset;
(2)只能实现kafka默认的最少一次消息传递语义;
知识补充:消息传递的3中语义:
至少一次,(消息不会丢,消息者至少得到一次,但有可能会重复,生产者向消费者发送之后,会等待消费者确认,没收到确认会再发) (kafka 默认实现的语义)。
至多一次,(消息会丢)
有且只有一次。
fetchSize: 从服务器获取单包大小;
bufferSize: kafka客户端缓冲区大小;
group.id: 分组消费时分组名 (指定的每个组将获得全量的数据)
同步生产模型
异步生产模型
至少成功一次 , 发送给kafka消费者
打包发送给kafka broker。
main()
创建到kafka broker的连接:KafkaClient(host,port)
选择或者自定义生产者负载均衡算法 partitioner (算法有:hash,轮询,随机)
设置生产者参数 (缓存队列长度,发送时间,同步/异步参数设置)
根据负载均衡算法和设置的生产者参数构造Producer对象
while True
getMessage:从上游获得一条消息
按照kafka要求的消息格式构造kafka消息
根据分区算法得到分区
发送消息
处理异常
同步生产模型:
(1)低消息丢失率;
(2)高消息重复率(由于网络原因,回复确认未收到);
(3)高延迟 (每发一条消息需要确认)
(使用在不丢消息场景)
异步生产模型:
(1)低延迟;
(2)高发送性能;(每秒一个分区发50万条)
(3)高消息丢失率(无确认机制,发送端队列满了,消息会丢掉;整个队列发送给)
(使用在允许丢消息场景,偶尔丢一条)
//同步配置参数:
默认的序列化方式:字节序列化。
设定分区算法:默认是对key进行hash分区算法,可以自定义分区算法。
确认机制 request.require.acks: 合理设置为1; 0: 绝不等确认 1: leader的一个副本收到这条消息,预科班并发回确认 -1: leader的所有副本都收到这条消息,并发回确认
消息是以key-value的形式发送的,key必须要设置。
message.send.max.retries: 发送失败重试次数;
retry.backoff.ms :未接到确认,认为发送失败的时间;
producer.type: 同步发送或者异步发送;
batch.num.messages: 异步发送时,累计最大消息数;
queue.buffering.max.ms:异步发送时,累计最大时间;
本文版本主要是针对0.8.2,配套学习教程,浪尖已经分享到了知识星球。
文章来源:https://blog.csdn.net/rlnLo2pNEfx9c/article/details/80491144
kafka的编程模型的更多相关文章
- Kafka 温故(五):Kafka的消费编程模型
Kafka的消费模型分为两种: 1.分区消费模型 2.分组消费模型 一.分区消费模型 二.分组消费模型 Producer : package cn.outofmemory.kafka; import ...
- storm的trident编程模型
storm的基本概念别人总结的, https://blog.csdn.net/pickinfo/article/details/50488226 编程模型最关键最难就是实现局部聚合的业务逻辑聚合类实现 ...
- DataFlow编程模型与Spark Structured streaming
流式(streaming)和批量( batch):流式数据,实际上更准确的说法应该是unbounded data(processing),也就是无边界的连续的数据的处理:对应的批量计算,更准确的说法是 ...
- Storm介绍及核心组件和编程模型
离线计算 离线计算:批量获取数据.批量传输数据.周期性批量计算数据.数据展示 代表技术:Sqoop批量导入数据.HDFS批量存储数据.MapReduce批量计算数据.Hive批量计算数据.azkaba ...
- storm介绍,核心组件,编程模型
一.流式计算概念 利用分布式的思想和方法,对海量“流”式数据进行实时处理,源自业务对海量数据,在“时效”的价值上的挖掘诉求,随着大数据场景应用场景的增长,对流式计算的需求愈发增多,流式计算的一般架构图 ...
- Storm 第一章 核心组件及编程模型
1 流式计算 流式计算:数据实时产生.实时传输.实时计算.实时展示 代表技术:Flume实时获取数据.Kafka/metaq实时数据存储.Storm/JStorm实时数据计算.Redis实时结果缓存. ...
- Storm集群组件和编程模型
Storm工作原理: Storm是一个开源的分布式实时计算系统,常被称为流式计算框架.什么是流式计算呢?通俗来讲,流式计算顾名思义:数据流源源不断的来,一边来,一边计算结果,再进入下一个流. 比 ...
- Spark流式编程介绍 - 编程模型
来源Spark官方文档 http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#programm ...
- Flink入门(四)——编程模型
flink是一款开源的大数据流式处理框架,他可以同时批处理和流处理,具有容错性.高吞吐.低延迟等优势,本文简述flink的编程模型. 数据集类型: 无穷数据集:无穷的持续集成的数据集合 有界数据集:有 ...
随机推荐
- B树 VS B+树
参考:https://www.cnblogs.com/vincently/p/4526560.html
- 启动nginx出错:open() "/var/run/nginx/nginx.pid" failed (2: No such file or directory)
[emerg] open() "/var/run/nginx/nginx.pid" failed (2: No such file or directory) 解决:mkdir / ...
- SeekBar和RatingBar的基本使用方法
SeekBar: main.xml: <?xml version="1.0" encoding="utf-8"?> <LinearLayout ...
- 091、Java中String类之使用“==”比较
01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...
- Django 数据库访问性能优化
使用标准的数据库优化技术: 在进行Django数据库访问性能优化之前,首先应该使用标准的数据库技术对其进行优化,比如给字段加索引,通过使用 django.db.models.Field.db_inde ...
- 洛谷 P4287 [SHOI2011]双倍回文题解
前言 用了一种很奇怪的方法来解,即二分判断回文,再进行某些奇怪的优化.因为这个方法很奇怪,所以希望如果有问题能够 hack 一下. 题解 我们发现,这题中要求的是字符串 \(SS'SS'\),其中 \ ...
- 六 Hibernate多表操作&级联&外键维护
Hibernate的一对多关联映射 Hibernate的多对多关联映射 数据库表与表之间的关系:一对多,多对多,一对一 一对多:一个部门对应多个员工,一个员工只能属于一个部门.一个客户对应多个联系人, ...
- JuJu团队12月29号工作汇报
JuJu团队12月29号工作汇报 JuJu Scrum 团队成员 今日工作 剩余任务 困难 飞飞 数据处理 待安排 无 婷婷 调试代码 提升acc 无 恩升 修正evaluate 待完成 无 金华 ...
- docker-compose 修改zabbix images 添加微信报警插件 时间同步 中文乱码 添加grafana美化zabbix
我们先来看一下我们要修改得 zabbix.yaml github https://github.com/bboysoulcn/awesome-dockercompose ve ...
- linux测试网速
wget https://raw.githubusercontent.com/sivel/speedtest-cli/master/speedtest.py python speedtest.py D ...