汉诺塔(BZOJ)

P4285 [SHOI2008]汉诺塔

居然是省选题,还是DP!(我的DP菜得要死,碰见就丢分)

冥思苦想了1h+ \(\to\) ?!

就是普通的hanoi NOI or HNOI? DP加上一个乱搞的数组,然后我还写反了一次,就gg了。

大概思路:

\(dp_{i,j}\)表示从柱子i移动j个盘子的最优解,\(f_{i,j}\) 表示从柱子i移动j个盘子到哪个柱子最优。然后就可以转移了!

先把i-1个盘子从x移到 \(y=f_{x,i-1}\) ,设另一根为z,然后分类:

1.\(f_{y,i-1}=y\),直接舍掉,不用DP了。

2.\(f_{y,i-1}=z\),那么把i-1个盘子从x移到y,把第i个移到z,然后把y上的i-1个移到z。

\(dp_{x,i}=dp_{x,i-1}+1+dp_{y,x-1},f_{i,j}=z\)

3.\(f_{y,i-1}=x\),把i-1个盘子先从x移到z,再把第i-1个从y移到x,再把z上的第i个移到y,再把x上i-1个的移到y

\(dp_{x,i}=dp_{x,i-1}+1+dp_{y,i-1}+1+dp_{x,i-1},f_{i,j}=y\)

最后 \(dp_{1,n}\) 就是答案

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=35;
char s[5];
int n;
int dp[N][N],f[4][N],from[7],to[7];
signed main()
{
scanf("%lld",&n);
for(int i=1;i<=6;++i)
{
scanf("%s",s);
from[i]=s[0]-'A'+1,to[i]=s[1]-'A'+1;
}
for(int i=6;i>=1;--i)f[from[i]][1]=to[i];
dp[1][1]=dp[2][1]=dp[3][1]=1;
for(int i=2;i<=n;++i)
{
for(int j=1;j<=3;++j)
{
int x=j,y=f[x][i-1],z=6-x-y;
if(f[y][i-1]==z)
{
dp[x][i]=dp[y][i-1]+1+dp[x][i-1];
f[x][i]=z;
}
if(f[y][i-1]==x)
{
dp[x][i]=dp[y][i-1]+1+dp[x][i-1]+1+dp[x][i-1];
f[x][i]=y;
}
}
}
printf("%lld\n",dp[1][n]);
return 0;
}

BZOJ1019 汉诺塔/洛谷P4285 [SHOI2008]汉诺塔的更多相关文章

  1. bzoj1019 / P4285 [SHOI2008]汉诺塔

    P4285 [SHOI2008]汉诺塔 递推 题目给出了优先级,那么走法是唯一的. 我们用$0,1,2$代表$A,B,C$三个柱子 设$g[i][x]$为第$x$根柱子上的$i$个盘子,经过演变后最终 ...

  2. 洛谷P1242 新汉诺塔(dfs,模拟退火)

    洛谷P1242 新汉诺塔 最开始的思路是贪心地将盘子从大到小依次从初始位置移动到目标位置. 方法和基本的汉诺塔问题的方法一样,对于盘子 \(i\) ,将盘子 \(1\to i-1\) 放置到中间柱子上 ...

  3. P4285 [SHOI2008]汉诺塔 题解 (乱搞)

    题目链接 P4285 [SHOI2008]汉诺塔 解题思路 提供一种打表新思路 先来证明一个其他题解都没有证明的结论:\(ans[i]\)是可由\(ans[i-1]\)线性递推的. (\(ans[i] ...

  4. 洛谷P1282 多米诺骨牌 (DP)

    洛谷P1282 多米诺骨牌 题目描述 多米诺骨牌有上下2个方块组成,每个方块中有1~6个点.现有排成行的 上方块中点数之和记为S1,下方块中点数之和记为S2,它们的差为|S1-S2|.例如在图8-1中 ...

  5. Bzoj1018/洛谷P4246 [SHOI2008]堵塞的交通(线段树分治+并查集)

    题面 Bzoj 洛谷 题解 考虑用并查集维护图的连通性,接着用线段树分治对每个修改进行分治. 具体来说,就是用一个时间轴表示图的状态,用线段树维护,对于一条边,我们判断如果他的存在时间正好在这个区间内 ...

  6. P4285 [SHOI2008]汉诺塔

    题目描述 汉诺塔由三根柱子(分别用A.B.C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体. 对汉诺塔的一次合法的操作是指:从一根 ...

  7. 洛谷 P1242 新汉诺塔

    原题链接 题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案 ...

  8. 洛谷P1242 新汉诺塔

    传送门啦 首先要将第n个盘子从x到y,那么就要把比n小的盘子全部移到6-x-y,然后将n移到y 仔细想想:6代表的是3根初始柱,3根目标柱. 6-(x+y) 便是我们的中转柱了,因为到这个位置是最优的 ...

  9. 洛谷P1242 新汉诺塔 【神奇的递归】

    题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案,使得从初 ...

随机推荐

  1. 二叉树(3)AVL 树

    封装基于 BinaryTreeOperations 的 AVL 树(一种自平衡的二叉查找树). 除了提供 BinaryTreeOperations 中的部分基础接口外,增加按键的插入 和 按键或节点指 ...

  2. 数字反转(0)<P2011_1>

    数字反转  (reverse.cpp/c/pas) [问题描述] 给定一个整数,请将该数各个位上数字反转得到一个新数.新数也应满足整数的常见形 式,即除非给定的原数为零,否则反转后得到的新数的最高位数 ...

  3. 了解Web的相关知识

    一.WWW基础 WWW(world wide web, 万维网)是Internet上基于客户端/服务器体系结构的分布式多平台的超文本超媒体信息服务系统.它利用超文本(hypertext).超媒体(hy ...

  4. 函数返回值retrun

    如果函数不写retrun,默认返回None. return多个对象,那么Python帮我们把这多个对象封装成一个元组返回. return   作用   结束函数.返回某个对象

  5. selenium webdriver 模拟鼠标悬浮

    /**模拟鼠标悬浮在某元素上 * @param driver * @param locator */ public static void moveToElement(WebDriver driver ...

  6. day5-2正则表达式

    正则表达式: 正则表达式对象的创建 1,构造函数 var pattern =new RegExp("正则表达式","修饰符") var pattern =new ...

  7. Codeforces Round #581 (Div. 2)D(思维,构造,最长非递减01串)

    #define HAVE_STRUCT_TIMESPEC#include<bits/stdc++.h>using namespace std;char s[100007];int main ...

  8. #P2341 [HAOI2006]受欢迎的牛 题解

    题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的——如果A喜 欢B,B喜欢C,那么A也喜欢C ...

  9. 使用 C++ 处理 JSON 数据交换格式

    一.摘要 JSON 的全称为:JavaScript Object Notation,顾名思义,JSON 是用于标记 Javascript 对象的,JSON 官方的解释为:JSON 是一种轻量级的数据传 ...

  10. Windows xp Diskpart合并分区的方法

    非常不错的合并分区的方法,经测试,好用,就是对于稳定性就不知道了,理论下应该没什么问题,对于个人电脑合并分区和服务器分区合并来说,无疑是一个非常好的办法     分区增容就是当一个分区的空间不能满足使 ...