flink-cdc同步mysql数据到hbase
本文首发于我的个人博客网站 等待下一个秋-Flink
什么是CDC?
CDC是(Change Data Capture 变更数据获取)的简称。核心思想是,监测并捕获数据库的变动(包括数据 或 数据表的插入INSERT、更新UPDATE、删除DELETE等),将这些变更按发生的顺序完整记录下来,写入到消息中间件中以供其他服务进行订阅及消费。
1. 环境准备
mysql
hbase
flink 1.13.5 on yarn
说明:如果没有安装hadoop,那么可以不用yarn,直接用flink standalone环境吧。
2. 下载下列依赖包
下面两个地址下载flink的依赖包,放在lib目录下面。
如果你的Flink是其它版本,可以来这里下载。
我是flink1.13,这里flink-sql-connector-mysql-cdc,需要1.4.0以上版本。
如果你是更高版本的flink,可以自行https://github.com/ververica/flink-cdc-connectors下载新版mvn clean install -DskipTests 自己编译。
这是我编译的最新版2.2,传上去发现太新了,如果重新换个版本,我得去gitee下载源码,不然github速度太慢了,然后用IDEA编译打包,又得下载一堆依赖。我投降,我直接去网上下载了个1.4的直接用了。
我下载的jar包,放在flink的lib目录下面:
flink-sql-connector-hbase-1.4_2.11-1.13.5.jar
flink-sql-connector-mysql-cdc-1.4.0.jar
3. 启动flink-sql client
- 先在yarn上面启动一个application,进入flink13.5目录,执行:
bin/yarn-session.sh -d -s 2 -jm 1024 -tm 2048 -qu root.sparkstreaming -nm flink-cdc-hbase
- 进入flink sql命令行
bin/sql-client.sh embedded -s flink-cdc-hbase
4. 同步数据
这里有一张mysql表:
CREATE TABLE `product_view` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`user_id` int(11) NOT NULL,
`product_id` int(11) NOT NULL,
`server_id` int(11) NOT NULL,
`duration` int(11) NOT NULL,
`times` varchar(11) NOT NULL,
`time` datetime NOT NULL,
PRIMARY KEY (`id`),
KEY `time` (`time`),
KEY `user_product` (`user_id`,`product_id`) USING BTREE,
KEY `times` (`times`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
-- 样本数据
INSERT INTO `product_view` VALUES ('1', '1', '1', '1', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('2', '1', '1', '1', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('3', '1', '1', '3', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('4', '1', '1', '2', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('5', '8', '1', '1', '120', '120', '2020-05-14 13:14:00');
INSERT INTO `product_view` VALUES ('6', '8', '1', '2', '120', '120', '2020-05-13 13:14:00');
INSERT INTO `product_view` VALUES ('7', '8', '1', '3', '120', '120', '2020-04-24 13:14:00');
INSERT INTO `product_view` VALUES ('8', '8', '1', '3', '120', '120', '2020-04-23 13:14:00');
INSERT INTO `product_view` VALUES ('9', '8', '1', '2', '120', '120', '2020-05-13 13:14:00');
- 创建数据表关联mysql
CREATE TABLE product_view_source (
`id` int,
`user_id` int,
`product_id` int,
`server_id` int,
`duration` int,
`times` string,
`time` timestamp,
PRIMARY KEY (`id`) NOT ENFORCED
) WITH (
'connector' = 'mysql-cdc',
'hostname' = '192.168.1.2',
'port' = '3306',
'username' = 'bigdata',
'password' = 'bigdata',
'database-name' = 'test',
'table-name' = 'product_view'
);
这样,我们在flink sql client操作这个表相当于操作mysql里面的对应表。
- 创建数据表关联hbase
CREATE TABLE product_view_hbase (
rowkey INT,
family1 ROW<user_id INT, product_id INT, server_id INT, duration INT>,
PRIMARY KEY (rowkey) NOT ENFORCED
) WITH (
'connector' = 'hbase-1.4',
'table-name' = 'product_view',
'zookeeper.quorum' = 'cdh-001:2181'
);
这里,需要提前在hbase里面创建好product_view这个主题。
- 同步数据
建立同步任务,可以使用sql如下:
insert into product_view_hbase select id as rowkey, ROW(user_id, product_id, server_id, duration) from product_view_source;
这个时候是可以退出flink sql-client的,然后进入flink web-ui,可以看到mysql表数据已经同步到hbase中了,对mysql进行插入,hbase都是同步更新的。
进入hbase shell,可以看到数据已经从mysql同步到hbase了:
hbase(main):009:0> scan 'product_view'
ROW COLUMN+CELL
\x00\x00\x00\x01 column=family1:duration, timestamp=1663223736391, value=\x00\x00\x00x
\x00\x00\x00\x01 column=family1:product_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x01 column=family1:server_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x01 column=family1:user_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x02 column=family1:duration, timestamp=1663223736391, value=\x00\x00\x00x
\x00\x00\x00\x02 column=family1:product_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x02 column=family1:server_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x02 column=family1:user_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x03 column=family1:duration, timestamp=1663223736391, value=\x00\x00\x00x
\x00\x00\x00\x03 column=family1:product_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x03 column=family1:server_id, timestamp=1663223736391, value=\x00\x00\x00\x03
\x00\x00\x00\x03 column=family1:user_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x04 column=family1:duration, timestamp=1663223736391, value=\x00\x00\x00x
\x00\x00\x00\x04 column=family1:product_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x04 column=family1:server_id, timestamp=1663223736391, value=\x00\x00\x00\x02
\x00\x00\x00\x04 column=family1:user_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x05 column=family1:duration, timestamp=1663223736391, value=\x00\x00\x00x
\x00\x00\x00\x05 column=family1:product_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x05 column=family1:server_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x05 column=family1:user_id, timestamp=1663223736391, value=\x00\x00\x00\x08
\x00\x00\x00\x06 column=family1:duration, timestamp=1663223736391, value=\x00\x00\x00x
\x00\x00\x00\x06 column=family1:product_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x06 column=family1:server_id, timestamp=1663223736391, value=\x00\x00\x00\x02
\x00\x00\x00\x06 column=family1:user_id, timestamp=1663223736391, value=\x00\x00\x00\x08
\x00\x00\x00\x07 column=family1:duration, timestamp=1663223736391, value=\x00\x00\x00x
\x00\x00\x00\x07 column=family1:product_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x07 column=family1:server_id, timestamp=1663223736391, value=\x00\x00\x00\x03
\x00\x00\x00\x07 column=family1:user_id, timestamp=1663223736391, value=\x00\x00\x00\x08
\x00\x00\x00\x09 column=family1:duration, timestamp=1663223736391, value=\x00\x00\x00x
\x00\x00\x00\x09 column=family1:product_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x09 column=family1:server_id, timestamp=1663223736391, value=\x00\x00\x00\x03
\x00\x00\x00\x09 column=family1:user_id, timestamp=1663223736391, value=\x00\x00\x00\x08
\x00\x00\x00\x0A column=family1:duration, timestamp=1663223736391, value=\x00\x00\x00x
\x00\x00\x00\x0A column=family1:product_id, timestamp=1663223736391, value=\x00\x00\x00\x01
\x00\x00\x00\x0A column=family1:server_id, timestamp=1663223736391, value=\x00\x00\x00\x02
\x00\x00\x00\x0A column=family1:user_id, timestamp=1663223736391, value=\x00\x00\x00\x08
9 row(s)
Took 0.1656 seconds
直接在flink-sql client里面查询hbase数据,也是可以的:
Flink SQL> select * from product_view_hbase ;
2022-09-15 15:38:23,205 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - No path for the flink jar passed. Using the location of class org.apache.flink.yarn.YarnClusterDescriptor to locate the jar
2022-09-15 15:38:23,207 INFO org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider [] - Failing over to rm72
2022-09-15 15:38:23,212 INFO org.apache.flink.yarn.YarnClusterDescriptor [] - Found Web Interface cdh-001:35225 of application 'application_1633924491541_7321'.
执行上面查询sql,就会进入界面,这就是hbase里面的数据了:
5. 关联查询
在这个flink-sql client环境中,这里有两张表:product_view_source(mysql的表)和product_view_hbase(hbase的表),后者是有前者查询导入的,这里为了简单,我没有再关联其它第三张表,就用这两张表,做关联查询,达到演示的目的。
select product_view_source.*, product_view_hbase.* from product_view_source
inner join product_view_hbase
on product_view_source.id = product_view_hbase.rowkey;
这里做了个简单的关联查询,通过id跟rowkey关联,然后打开web-ui,通过flink web-ui结果可以看出,这里是个hash join,两个source,到join,一共3个task。
看看查出来的结果吧,这是flnk-sql client:
比如我选中这一行,进来后是这条数据的详细情况,是没有问题的:
参考资料
https://nightlies.apache.org/flink/flink-docs-release-1.13/zh/docs/connectors/table/hbase/
flink-cdc同步mysql数据到hbase的更多相关文章
- Sqoop导入mysql数据到Hbase
sqoop import --driver com.mysql.jdbc.Driver --connect "jdbc:mysql://11.143.18.29:3306/db_1" ...
- Sqoop将mysql数据导入hbase的血与泪
Sqoop将mysql数据导入hbase的血与泪(整整搞了大半天) 版权声明:本文为yunshuxueyuan原创文章.如需转载请标明出处: https://my.oschina.net/yunsh ...
- 使用Logstash来实时同步MySQL数据到ES
上篇讲到了ES和Head插件的环境搭建和配置,也简单模拟了数据作测试 本篇我们来实战从MYSQL里直接同步数据 一.首先下载和你的ES对应的logstash版本,本篇我们使用的都是6.1.1 下载后使 ...
- 使用logstash同步MySQL数据到ES
使用logstash同步MySQL数据到ES 版权声明:[分享也是一种提高]个人转载请在正文开头明显位置注明出处,未经作者同意禁止企业/组织转载,禁止私自更改原文,禁止用于商业目的. https:// ...
- Logstash使用jdbc_input同步Mysql数据时遇到的空时间SQLException问题
今天在使用Logstash的jdbc_input插件同步Mysql数据时,本来应该能搜索出10条数据,结果在Elasticsearch中只看到了4条,终端中只给出了如下信息 [2017-08-25T1 ...
- 推荐一个同步Mysql数据到Elasticsearch的工具
把Mysql的数据同步到Elasticsearch是个很常见的需求,但在Github里找到的同步工具用起来或多或少都有些别扭. 例如:某记录内容为"aaa|bbb|ccc",将其按 ...
- centos7配置Logstash同步Mysql数据到Elasticsearch
Logstash 是开源的服务器端数据处理管道,能够同时从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的“存储库”中.个人认为这款插件是比较稳定,容易配置的使用Logstash之前,我们得明确 ...
- flink-cdc同步mysql数据到hive
本文首发于我的个人博客网站 等待下一个秋-Flink 什么是CDC? CDC是(Change Data Capture 变更数据获取)的简称.核心思想是,监测并捕获数据库的变动(包括数据 或 数据表的 ...
- canal同步MySQL数据到ES6.X
背景: 最近一段时间公司做一个技术架构的更改,由于之前使用的solr和目前的业务不太匹配,具体原因不多说啦.所以要把数据放到Elasticsearch中进行快速的搜索,这是便产生了一个数据迁移的需求, ...
随机推荐
- JS 会有变量提升和函数提升
JavaScript变量函数声明提升(Hoisting)是在 Javascript 中执行上下文工作方式的一种认识(也可以说是一种预编译),从字面意义上看,"变量提升"意味着变量和 ...
- c# 怎样能写个sql的解析器
c# 怎样能写个sql的解析器 本示例主要是讲明sql解析的原理,真实的源代码下查看 sql解析器源代码 详细示例DEMO 请查看demo代码 前言 阅读本文需要有一定正则表达式基础 正则表达式基础教 ...
- windows脚本bat做文件备份
@ECHO OFF echo 切换到当前目录... cd /d %~dp0% echo 开始复制Code1... echo d | XCOPY Code1 ..\备份\bakdir\Code1 /s ...
- NC14662 小咪买东西
NC14662 小咪买东西 题目 题目描述 小咪是一个土豪手办狂魔,这次他去了一家店,发现了好多好多( \(n\) 个)手办,但他是一个很怪的人,每次只想买 \(k\) 个手办,而且他要让他花的每一分 ...
- 可视化查询(sp_helptext)——快速查询包含指定字符串的存储过程(附源码)
前言 在开发中,随着业务逻辑的调整,修改存储过程是必不可免的. 那怎么定位到需要修改的存储过程呢?一个一个的点开查询?存储过程少的话还行,一旦存储过程过多,这样是很浪费时间的,一个不注意还会遗漏掉. ...
- NOI / 1.2编程基础之变量定义、赋值及转换全题详解(5063字)
目录 01:整型数据类型存储空间大小 02:浮点型数据类型存储空间大小
- SkyWalking分布式系统应用程序性能监控工具-上
概述 微服务系统监控三要素 现在系统基本都是微服务架构,对于复杂微服务链路调用如下问题如何解决? 一个请求经过了这些服务后其中出现了一个调用失败的问题,如何定位问题发生的地方? 如何计算每个节点访问流 ...
- 20220724-Java的继承
目录 含义 代码示例 使用方法和注意事项 个人理解 含义 继承Extends 面向对象最显著的一个特性,继承是从已有的类中派生出新的类,新的类能吸收已有类的性和方法,并能扩展新的能力. 代码示例 cl ...
- OPC UA分布式IO模块
OPC UA IO模块对工业物联网的影响 OPC UA IO模块是指IO模块支持OPC UA协议,可以直接与OPC Client进行通信,这样就可以从OPC Client上直接远程通过以太网对IO口进 ...
- wamp升级php
1. 停止WAMP服务器. 2. 去网站windows.php.net 下载php-5.4.31-nts-Win32-VC9-x86.zip(32位的). 不要下载THE INSTALLER. 3 ...