在太阳西斜的这个世界里,置身天上之森。等这场战争结束之后,不归之人与望眼欲穿的众人, 人人本着正义之名,长存不灭的过去、逐渐消逝的未来。我回来了,纵使日薄西山,即便看不到未来,此时此刻的光辉,盼君勿忘。————世界上最幸福的女孩

珂朵莉最最最最最最最珂爱了!

闲话少说,切入正题


第一道 Ynoi&400 题祭

害怎么又暴露自己的菜鸡水平了

显然,\(1\le n,m,a_i \le 10^5\) 这样友好的数据,没有修改的良心操作和可以离线的痕迹,这很显然是个莫队。

但是我们会发现“子序列”“去重”这些东东不好计算,我们转化成贡献。

设 \([l,r]\) 这个区间内有一个 \(x\),这个 \(x\) 又出现了 \(k\) 次,我们来计算 \(x\) 对于 \([l,r]\) 的贡献。

很显然,\([l,r]\) 有 \(2^{r-l+1}\) 个子序列,因为每个元素只有两种状态:选或不选,那么不包含 \(x\) 的子序列有多少个呢?显然就有 \(2^{r-l+1-k}\) 个,由此,我们将两个相减就能得到包含 \(x\) 的子序列个数:\(2^{r-l+1}-2^{r-l+1-k}\) 就是包含 \(x\) 的子序列个数。所以 \(x\) 的贡献就是 \(x\times (2^{r-l+1}-2^{r-l+1-k})\)。


设 \(sum_i\) 为出现次数为 \(i\) 的和,\(cnt_i\) 为 \(i\) 数出现的次数。

然后我们需要一个 DS 来维护一串数量,这些数量为一个数出现的个数,需要支持快速遍历,插入和删除,显然可以用双向链表来维护。

然后我们就可以用莫队来维护这个 \(sum_i\),在插入删除时维护数量链表,最后遍历链表然后根据上面的贡献公式直接累加就好了~


还有一个问题,就是该题中我们要多次计算二的次幂,然而鹅快速幂是 \(\log_2 n\) 的,这该怎么办?

黑科技光速幂出现了!

光速幂是什么?就是预处理 \(2^0\) 到 \(2^{\sqrt n}\) 和 \(2^{\sqrt n},2^{2\times {\sqrt{n}}},2^{3\times {\sqrt{n}}}...2^n\),每个幂次我们都把它看成两个部分相乘就可以 \(O(1)\) 计算啦~


还有一个重要的事情:

能用 \(a_i+a_i\),不用 \(a_i\times2\)

对于我这样并不怎么卡过常的蒟蒻来说这很重要,不然乘 2 试试就逝世/dk


上代码!

#include<cstdio>
#include<algorithm>
#include<cmath>
#define MAXN 100010
#define int long long//这道题的常数不怎么卡,可以这样写
using namespace std;
int n,m,len;
struct node{//莫队输入
int l,r,cl,ind,k;
}in[MAXN];
inline int read()//快读
{
int ans=0;
char ch=getchar();
while (ch<'0' || ch>'9') ch=getchar();
while (ch>='0' && ch<='9')ans=ans*10+ch-'0',ch=getchar();
return ans;
}
inline void write(int x)
{
char f[200];
int tmp=x>0?x:-x,cnt=0;
if(x==0)putchar('0'),putchar('\n');
else{
if(x<0)putchar('-');
while(tmp>0)f[cnt++]=tmp%10+'0',tmp/=10;
while(cnt>0)putchar(f[--cnt]);
putchar('\n');
}
}
struct list{//手写双向链表
int pre[MAXN],nxt[MAXN],tot;
void insert(int x){nxt[tot]=x,pre[x]=tot,tot=x;}
void erase(int x)
{
if(x!=tot)nxt[pre[x]]=nxt[x],pre[nxt[x]]=pre[x];
else nxt[pre[x]]=0,tot=pre[x];
pre[x]=nxt[x]=0;
}
}ML;
bool cmp(node &x,node &y)//莫堆排序
{
return ((x.cl!=y.cl)?(x.l<y.l):((x.cl&1)?(x.r<y.r):(x.r>y.r)));
}
int sum[MAXN],cnt[MAXN],a[MAXN],p1[MAXN],p2[MAXN],ans[MAXN];
void get(int mod)//光速幂预处理
{
p1[0]=p2[0]=1;
for(int p=1;p<=len+7;p++)
p1[p]=(p1[p-1]+p1[p-1])%mod;
for(int p=1;p<=n/len+7;p++)
p2[p]=p2[p-1]*p1[len]%mod;
}
int Pow(int k,int mod){return p2[k/len]*p1[k%len]%mod;}//光速幂
void add(int qwq)//莫队插入
{
sum[cnt[qwq]]-=qwq;
if(!sum[cnt[qwq]])
ML.erase(cnt[qwq]);
cnt[qwq]++;
if(!sum[cnt[qwq]])
ML.insert(cnt[qwq]);
sum[cnt[qwq]]+=qwq;
}
void del(int qwq)//莫队删除
{
sum[cnt[qwq]]-=qwq;
if(!sum[cnt[qwq]])
ML.erase(cnt[qwq]);
cnt[qwq]--;
if(!sum[cnt[qwq]])
ML.insert(cnt[qwq]);
sum[cnt[qwq]]+=qwq;
}
signed main()
{
n=read(),m=read();
len=sqrt(n);
for(int p=1;p<=n;p++)
a[p]=read();
for(int p=1;p<=m;p++)
{
in[p].l=read(),in[p].r=read(),in[p].k=read();
in[p].ind=p,in[p].cl=(in[p].l-1)/len+1;
}
sort(in+1,in+m+1,cmp);
int l=1,r=0;
for(int p=1;p<=m;p++)
{
get(in[p].k);
while(l<in[p].l)del(a[l++]);
while(l>in[p].l)add(a[--l]);
while(r<in[p].r)add(a[++r]);
while(r>in[p].r)del(a[r--]);
for(int i=ML.nxt[0];i;i=ML.nxt[i])
ans[in[p].ind]=(ans[in[p].ind]+((sum[i]*(Pow(in[p].r-in[p].l+1,in[p].k)-Pow(in[p].r-in[p].l+1-i,in[p].k)))%in[p].k+in[p].k)%in[p].k+in[p].k)%in[p].k;//然后是统计贡献,记得取模
}
for(int p=1;p<=m;p++)
write(ans[p]);//输出
}

PS:这份代码不能保证随时随地每时每刻都能 AC 这道题,因为最长的点跑了 3s,很可能评测姬任务一多然后就炸开花了

题解 P5072 【[Ynoi2015] 盼君勿忘】的更多相关文章

  1. 【题解】Luogu P5072 [Ynoi2015]盼君勿忘

    众所周知lxl是个毒瘤,Ynoi道道都是神仙题,题面好评 原题传送门 一看这题没有修改操作就知道这是莫队题 我博客里对莫队的简单介绍 既然是莫队,我们就要考虑每多一个数或少一个数对答案的贡献是什么 假 ...

  2. 洛谷:P5072 [Ynoi2015]盼君勿忘

    原题地址:https://www.luogu.org/problem/P5072 题目简述 给定一个序列,每次查询一个区间[l,r]中所有子序列分别去重后的和mod p 思路 我们考虑每个数的贡献.即 ...

  3. Luogu P5072 [Ynoi2015]盼君勿忘

    题意 给定一个长度为 \(n\) 的序列 \(a\) 和 \(m\) 次询问,第 \(i\) 次询问需要求出 \([l_i,r_i]\) 内所有子序列去重之后的和,对 \(p_i\) 取模. \(\t ...

  4. 洛谷P5072 [Ynoi2015]盼君勿忘 [莫队]

    传送门 辣鸡卡常题目浪费我一下午-- 思路 显然是一道莫队. 假设区间长度为\(len\),\(x\)的出现次数为\(k\),那么\(x\)的贡献就是\(x(2^{len-k}(2^k-1))\),即 ...

  5. P5072 [Ynoi2015]盼君勿忘

    传送门 一开始理解错题意了--还以为是两个子序列相同的话只算一次--结果是子序列里相同的元素只算一次-- 对于一个区间\([l,r]\),设其中\(x\)出现了\(k\)次,那么它的贡献就是它的权值乘 ...

  6. [Ynoi2015]盼君勿忘

    题目大意: 给定一个序列,每次查询一个区间\([l,r]\)中所有子序列分别去重后的和\(\bmod p\)(每次询问模数不同). 解题思路: 在太阳西斜的这个世界里,置身天上之森.等这场战争结束之后 ...

  7. 【洛谷5072】[Ynoi2015] 盼君勿忘(莫队)

    点此看题面 大致题意: 一个序列,每次询问一个区间\([l,r]\)并给出一个模数\(p\),求模\(p\)意义下区间\([l,r]\)内所有子序列去重后值的和. 题意转化 原来的题意看起来似乎很棘手 ...

  8. Luogu5072 [Ynoi2015]盼君勿忘 【莫队】

    题目描述:对于一个长度为\(n\)的序列,\(m\)次询问\(l,r,p\),计算\([l,r]\)的所有子序列的不同数之和\(\mathrm{mod} \ p\). 数据范围:\(n,m,a_i\l ...

  9. EC笔记:第二部分:12、复制对象时勿忘其每一个成分

    EC笔记:第二部分:12.复制对象时勿忘其每一个成分 1.场景 某些时候,我们不想使用编译器提供的默认拷贝函数(包括拷贝构造函数和赋值运算符),考虑以下类定义: 代码1: class Point{ p ...

  10. EC读书笔记系列之7:条款12 复制对象时勿忘其每一个成分

    记住: ★copying函数应确保复制“对象内的所有成员变量”及“所有base class成分” ★不要尝试以某个copying函数实现另一个copying函数.应该将共同机能放进第三个函数中,并由两 ...

随机推荐

  1. ThinkPHP6.0在phpstorm添加查询构造器和模型的代码提示

    ThinkPHP6.0升级后 使用查询构造器和模型都没有了提示 原因是tp6源码中没有添加注释 找到Model.php * @method Query where(mixed $field, stri ...

  2. 【大数据-课程】高途-天翼云侯圣文-Day3-实时计算原理解析

    〇.老师及课程介绍 一.今日内容 二.实时计算理论解析 1.什么是实时计算 微批处理.流式处理.实时计算 水流和车流的例子 spark streaming就是一种微批处理,水满了才处理,进入下一个地方 ...

  3. 复杂mysql/多表查询

    目录 多表查询的两种方法 sql语句基础语法补充 concat / existe / 表字段 增加 修改 删除 复杂sql练习题 多表查询的两种方法 方式1:连表操作 inner join 内连接 s ...

  4. Dart开发服务端,我是不是发烧(骚)了?

    前言 最近一段时间,我和我的团队开发了两个 APP. 客户端方面采用了 Flutter,方便跨平台. 服务端方面剑走偏锋,没有采用 php, pythod, java之类的,而是采用了与 Flutte ...

  5. Qt网络编程-书接上文,浅谈TCP文件收发,以及心跳包

    qt网络编程-书接上文,浅谈文件收发 上文Qt网络编程-从0到多线程编程中谈到 在qt中的qtcpsocket通讯的用法,接下来浅谈一下关于tcp通讯的实际应用,当然了由于是浅谈,也不能保证其功能的完 ...

  6. openresty package path

    openresty lua_package_path 是整个openresty最基础的功能,不理解 path就无法做项目,更无法写框架. 先看下文档lua_package_path https://g ...

  7. java逻辑运算中异或^

    本文主要阐明逻辑运算符^(异或)的作用 a ^ b,相异为真,相同为假. 注意,异或运算,还能交换两个变量. int a = 1; int b = 2; System.out.println(&quo ...

  8. [Leetcode]反转字符串中的单词 III

    题目 代码 class Solution { public: string reverseWords(string s) { for(int i=0,j=0;j<=s.size();j++) { ...

  9. 在统信UOS上将桌面窗口输出到Windows机器上的Xming

    目前所用版本是统信UOS V20,具体版本是家庭版22.0. 先尝试了一下,统信UOS自带的lightdm通过XDMCP无法正常输出到Windows机器上的Xming.VcXsrv.X Manager ...

  10. Java 进阶P-5.3+P-5.4

    封装 增加可扩展性 可以运行的代码!=良好的代码 对代码做维护的时候最能看出代码的质量 如果想要增加一个方向,如down或up 用封装来降低耦合 Room类和Game类都有大量的代码和出口相关 尤其是 ...