python音乐分类--knn
1 #利用knn算法分类音乐,将音乐进行情绪分类
2 #将音乐分为兴奋的(excited), 愤怒的(angry),悲伤的(sorrowful),轻松的(relaxed)
3
4 #可分离因素
5 # mfcc
6
7 import numpy as np
8 from matplotlib import pyplot as plt
9 from scipy import io as spio
10 from sklearn.decomposition import pca
11 from sklearn.preprocessing import StandardScaler
12 import librosa
13 import librosa.display
14 from mutagen.mp3 import MP3
15 import numpy as np
16 import os
17
18 def getFeature(path):
19 y, sr = librosa.load(path)
20
21 mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)
22 mfccNew = np.ravel(mfccs[:, :1000])
23 return mfccNew
24
25 def loadDataSet():
26 #歌曲的数量
27 dataSet = np.zeros((40, 40000))
28 labels = []
29
30 excited = r'./musicF/excited'
31 angry = r'./musicF/angry'
32 sorrowful = r'./musicF/sorrowful'
33 relaxed = r'./musicF/relaxed'
34
35 filenames = os.listdir(excited)
36 i = 0
37 for filename in filenames:
38 print(filename)
39 dataSet[i] = getFeature(excited + '/' + filename)
40 labels.append('excited')
41 i += 1
42
43 filenames = os.listdir(angry)
44 for filename in filenames:
45 print(filename)
46 dataSet[i] = getFeature(angry + '/' + filename)
47 labels.append('angry')
48 i += 1
49
50 filenames = os.listdir(sorrowful)
51 for filename in filenames:
52 print(filename)
53 dataSet[i] = getFeature(sorrowful + '/' + filename)
54 labels.append('sorrowful')
55 i += 1
56
57 filenames = os.listdir(relaxed)
58 for filename in filenames:
59 print(filename)
60 dataSet[i] = getFeature(relaxed + '/' + filename)
61 labels.append('relaxed')
62 i += 1
63
64
65 return dataSet, labels
66
67 #欧几里得距离计算相关度
68 def kNNClassify(features, dataSet, k, labels):
69 numSamples = dataSet.shape[0]
70 t = np.tile(features, (numSamples , 1))
71
72
73
74 diffVal = t - dataSet #向量操作
75
76 squareDiffVal = diffVal ** 2
77 squareDist = np.sum(squareDiffVal,1)
78 distance = squareDist ** 0.5
79
80 #对相关度进行排序,相关度由大到小(数值由小到大)
81 sortedDistIndices = np.argsort(distance)
82
83 classCount = {}
84 for i in range(k):
85
86 voteLabel = labels[sortedDistIndices[i]]
87 classCount[voteLabel] = classCount.get(voteLabel, 0) + 1
88
89 maxCount = 0
90 ansKey = None
91 for key, value in classCount.items():
92 if value > maxCount:
93 ansKey = key
94 maxCount = value
95 return ansKey
96
97 #保存文件
98 def saveData(dataSet):
99 np.savetxt(r'./musicF/dataSet.txt', dataSet)
100
101 #从文件中加载数据集并返回
102 def loadDataFromFile():
103 return np.loadtxt(r'./musicF/dataSet.txt')
104
105 #保存标签到文件
106 def saveLabels(labels):
107 f = open('./musicF/labels.txt','w', encoding="gbk")
108 f.write(' '.join(labels))
109 f.close()
110
111
112 #读取标签数据
113 def loadLabels():
114 f = open('./musicF/labels.txt','r', encoding="gbk")
115 labelsString = f.read()
116 f.close()
117 labels = labelsString.split(' ')
118 return labels
119
120
121 def classify(path):
122 features = getFeature(path)
123 #读取数据
124 dataSet = loadDataFromFile()
125 labels = loadLabels()
126 ans = kNNClassify(features, dataSet, 7, labels)
127 return ans
128
129 def main():
130 path = r'./musicF/test/CMJ - 告白之夜(纯音乐)(Cover:Ayasa绚沙).mp3'
131 audio = MP3(path)
132 print('音乐时长为:',audio.info.length)
133 features = getFeature(path)
134 print(features.shape)
135
136 dataSet, labels = loadDataSet()
137 #保存数据
138 saveData(dataSet)
139 saveLabels(labels)
140
141 # #读取数据
142 # dataSet = loadDataFromFile()
143 # labels = loadLabels()
144
145 ans = kNNClassify(features, dataSet, 7, labels)
146 print('labels = ', ans)
147
148 def addData():
149 dataSet, labels = loadDataSet()
150 #保存数据
151 saveData(dataSet)
152 saveLabels(labels)
153
154 if __name__ == '__main__':
155 #addData()
156 main()
python音乐分类--knn的更多相关文章
- 使用python模拟实现KNN算法
一.KNN简介 1.KNN算法也称为K邻近算法,是数据挖掘分类技术之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表. 2.KNN算法的核心思想是如果一个样本 ...
- 手写算法-python代码实现KNN
原理解析 KNN-全称K-Nearest Neighbor,最近邻算法,可以做分类任务,也可以做回归任务,KNN是一种简单的机器学习方法,它没有传统意义上训练和学习过程,实现流程如下: 1.在训练数据 ...
- 机器学习算法 - 最近邻规则分类KNN
上节介绍了机器学习的决策树算法,它属于分类算法,本节我们介绍机器学习的另外一种分类算法:最近邻规则分类KNN,书名为k-近邻算法. 它的工作原理是:将预测的目标数据分别跟样本进行比较,得到一组距离的数 ...
- python 文本分类
python 文本分类 pyhton 机器学习 待续...
- 13、Selenium+python+API分类总结
Selenium+python+API分类总结 http://selenium-python.readthedocs.org/index.html 分类 方法 方法描述 客户端操作 __init__( ...
- Python机器学习算法 — KNN分类
KNN简介 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.KNN分类算法属于监督学习. 最简单最初级的分类器是将全部的训练 ...
- python实现简单分类knn算法
原理:计算当前点(无label,一般为测试集)和其他每个点(有label,一般为训练集)的距离并升序排序,选取k个最小距离的点,根据这k个点对应的类别进行投票,票数最多的类别的即为该点所对应的类别.代 ...
- 最邻近规则分类KNN算法
例子: 求未知电影属于什么类型: 算法介绍: 步骤: 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选择最近K个已 ...
- 机器学习--最邻近规则分类KNN算法
理论学习: 3. 算法详述 3.1 步骤: 为了判断未知实例的类别,以所有已知类别的实例作为参照 选择参数K 计算未知实例与所有已知实例的距离 选 ...
- Python机器学习-分类
监督学习下的分类模型,主要运用sklearn实践 kNN分类器 决策树 朴素贝叶斯 实战一:预测股市涨跌 # -*- coding: utf-8 -*- """ Crea ...
随机推荐
- python3 - Django3.2框架
提示:web开发已有php.java,而python在这方面,没有优势,python的优势在于:爬虫.人工智能.大数据分析等,python在web开发这方面,没必要掌握:版本:稳定版本:3.2(py3 ...
- 【快问快答】为什么NPOI读取表格数据的时候,遇到空格单元值会直接忽略
答:其实就是Excel文档的问题,具体问题出在哪里不知道,反正尝试换了一份新的文档来进行导入就可以!
- python38
Python break 语句 Python break语句,就像在C语言中,打破了最小封闭for或while循环. break语句用来终止循环语句,即循环条件没有False条件或者序列还没被完全递归 ...
- @Component类相互引用的加载顺序
发现bug:没有消息通知,看日志发现调用消息通知的url前缀为null,定位到此工具类 进入工具类 进入ComponentConstant类:它引用了两个配置类 问题:component标注的类相互引 ...
- 攻防世界-unseping(序列化,Bash shell)
这是一道序列化的题目,结合了Linux Bash shell知识 一.基础知识点 序列化 序列化的概念: 序列化 (Serialization)是将对象的状态信息转换为可以存储或传输的形式 ...
- 官网jdk8,jdk11下载时需要登录Oracle账号的问题解决
当到这一步骤时先勾选同意,在这个下载按钮上点鼠标右键复制链接地址 文件的下载地址 我们需要把地址做些修改.把等号前面的地址删掉,然后找到等号后面地址中的otn后面加上-pub 然后把这个地址直接复制到 ...
- 查看Windows操作系统编码方式
chcp 编码表: 代码页 国家(地区)或语言 437 美国 708 阿拉伯文(ASMO 708)720 阿拉伯文(DOS)850 多语言(拉丁文 I) 852 中欧(DOS) - 斯拉夫语(拉丁文 ...
- linux:day01 计算机基础 随堂笔记 马
本课程内容目录(前30天) 一,计算机基础 1,机械硬盘是比较慢的,如果有条件的话,还是换成固态硬盘有个120G就够了,价钱大概500G 700元 2,视频从一台机器拷贝到另外一台机器,复制的时候要限 ...
- 90、java ftp 读取文件
https://blog.csdn.net/qq_38380025/article/details/80679128
- Java流程控制之用户交互Scanner
Scanner对象 java.util.Scanner是Java5的新特征,可以通过Scanner类来获取用户的输入 #基本语法# Scanner s = new Scanner(System.in) ...