【python疫情可视化】用pyecharts开发全国疫情动态地图,效果酷炫!
一、效果演示
我用python开发了一个动态疫情地图,首先看下效果:
如图所示,地图根据实时数据通过时间线轮播的方式,动态展示数据的变化。随着时间的推移,疫情确诊数量的增多,地图各个省份颜色逐渐加深,可以很明显地看到动态可视化效果。
这个动态疫情地图,是通过python的第三方库pyecharts制作完成的。数据来源是github上的一位大神:
https://github.com/BlankerL/DXY-COVID-19-Data
在此,感谢github作者整理的数据来源,方便我们数据分析人员使用。
针对此数据源,我还开发了一个定时自动下载疫情数据的python脚本,有兴趣的小伙伴可以滴滴我。
二、代码分解
下面,通过python代码(部分核心代码)逐一分解,这个动态疫情地图是怎样实现的:
首先,导入需要的库:
import pandas as pd # 用于读取excel文件
from pyecharts import options as opts # 可视化选项
from pyecharts.charts import Timeline, Map # 时间线、地图
from pyecharts.globals import ThemeType # 图表主题
然后,定义好数据源文件,并做一些初始的数据清洗、数据预处理工作:
# 数据源文件
src_file = 'DXYArea_0214.xls'
# 中间文件
mid_file = 'to_csv4.csv'
# 疫情地图所用颜色
list_color = ['#F4AD8B', '#EF826F', '#EE806E', '#BD3932', '#801D17']
# 读取数据
df = pd.read_excel(io=src_file, usecols=['provinceName',
'province_confirmedCount',
'updateTime'],
) # 读取数据源
df['updateTime'] = df['updateTime'].astype(str).str[0:10]
df2 = df.groupby(['provinceName', 'updateTime']).apply(
lambda t: t[t.province_confirmedCount == t.province_confirmedCount.max()]) # 按省份日期分组统计确诊数量
df2 = df2[['provinceName', 'province_confirmedCount', 'updateTime']]
df2 = df2.drop_duplicates() # 删除重复值
df2 = df2.reset_index(drop=True) # 重置索引
df2.to_csv(mid_file, index=False) # 保存csv
df3 = pd.read_csv(mid_file)
筛选出指定日期的数据,并做一定的数据处理,供后续可视化代码读取调用:
# 筛选出指定日期的数据
df_20200201 = df3[df3['updateTime'].str.contains("2020-02-01")]
df_20200202 = df3[df3['updateTime'].str.contains("2020-02-02")]
df_20200203 = df3[df3['updateTime'].str.contains("2020-02-03")]
df_20200204 = df3[df3['updateTime'].str.contains("2020-02-04")]
df_20200205 = df3[df3['updateTime'].str.contains("2020-02-05")]
df_20200206 = df3[df3['updateTime'].str.contains("2020-02-06")]
df_20200207 = df3[df3['updateTime'].str.contains("2020-02-07")]
df_20200208 = df3[df3['updateTime'].str.contains("2020-02-08")]
df_20200209 = df3[df3['updateTime'].str.contains("2020-02-09")]
df_20200210 = df3[df3['updateTime'].str.contains("2020-02-10")]
df_20200211 = df3[df3['updateTime'].str.contains("2020-02-11")]
df_20200212 = df3[df3['updateTime'].str.contains("2020-02-12")]
df_20200213 = df3[df3['updateTime'].str.contains("2020-02-13")]
最后,也是最关键的代码,可视化地图部分:
def timeline_map() -> Timeline:
tl = Timeline(init_opts=opts.InitOpts(page_title="疫情地图4",
theme=ThemeType.CHALK,
width="1000px", height="620px"),
)
for idx in range(0, 13):
provinces = []
confirm_value = []
for item_pv in df_list[idx]['provinceName']:
provinces.append(item_pv)
for item_pc in df_list[idx]['province_confirmedCount']:
confirm_value.append(item_pc)
zipped = zip(provinces, confirm_value)
f_map = (
Map(init_opts=opts.InitOpts(width="900px",
height="500px",
page_title="疫情地图4",
bg_color=None))
.add(series_name="确诊数量",
data_pair=[list(z) for z in zipped],
maptype="china",
is_map_symbol_show=False)
.set_global_opts(
title_opts=opts.TitleOpts(title="2月全国疫情地图",
subtitle="2月{}日-当天数据\n"
"数据源:https://github.com/BlankerL/DXY-COVID-19-Data\n"
"注:仅限个人研究使用,请勿用作商业用途!".format(
idx + 1),
pos_left="center", ),
legend_opts=opts.LegendOpts(is_show=True, pos_top="40px", pos_right="30px"),
visualmap_opts=opts.VisualMapOpts(
is_piecewise=True, range_text=['高', '低'], pieces=[
{"min": 10000, "color": "#751d0d"},
{"min": 1000, "max": 9999, "color": "#ae2a23"},
{"min": 500, "max": 999, "color": "#d6564c"},
{"min": 100, "max": 499, "color": "#f19178"},
{"min": 10, "max": 99, "color": "#f7d3a6"},
{"min": 1, "max": 9, "color": "#fdf2d3"},
{"min": 0, "max": 0, "color": "#FFFFFF"}
]),
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=True),
markpoint_opts=opts.MarkPointOpts(
symbol_size=[90, 90], symbol='circle'),
effect_opts=opts.EffectOpts(is_show='True', )
)
)
tl.add(f_map, "{}日".format(idx + 1))
tl.add_schema(is_timeline_show=True, # 是否显示
play_interval=800, # 播放间隔
symbol=None, # 图标
is_loop_play=True # 循环播放
)
return tl
核心代码就是这些,执行成功之后,就是这样的效果啦:
【python疫情可视化】用pyecharts开发全国疫情动态地图,效果酷炫!的更多相关文章
- 【python可视化系列】python数据可视化利器--pyecharts
学可视化就跟学弹吉他一样,刚开始你会觉得自己弹出来的是噪音,也就有了在使用python可视化的时候,总说,我擦,为啥别人画的图那么溜: [python可视化系列]python数据可视化利器--pyec ...
- python数据可视化:pyecharts
发现了一个做数据可视化非常好的库:pyecharts.非常便捷好用,大力推荐!! 官方介绍:pyecharts 是一个用于生成 Echarts 图表的类库.Echarts 是百度开源的一个数据可视化 ...
- Python数据可视化实战:实时更新海外疫情数据,实现数据可视化
前言 我国的疫情已经得到了科学的控制,开始了全面的复工复产,但是国外的疫情却“停不下来”.国外现在可谓就是处于水深火热当中啊,病毒极强的传染性,导致了许多的人都“中招”了,我国已经全面复工复产了,人大 ...
- 【疫情动态条形图】用Python开发全球疫情排名动态条形图bar_chart_race
一.开发背景 你好,我是 @马哥python说 ,这是我用Python开发的全球疫情动态条形图,演示效果: https://www.zhihu.com/zvideo/15603276220259696 ...
- Codevs 1218 疫情控制 2012年NOIP全国联赛提高组
1218 疫情控制 2012年NOIP全国联赛提高组 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description H 国有 n 个城市,这 ...
- 如何使用Python快速制作可视化报表----pyecharts
如何使用Python快速制作可视化报表 数据可视化能力已经越来越成为各岗位的基础技能.领英的数据报告显示,数据可视化技能在2017年中国最热门技能中排名第一. 就数据分析而言,可视化探索几乎是你正 ...
- (数据科学学习手札108)Python+Dash快速web应用开发——静态部件篇(上)
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- (数据科学学习手札121)Python+Dash快速web应用开发——项目结构篇
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 这是我的系列教程Python+Dash快速web ...
- Python数据可视化编程实战pdf
Python数据可视化编程实战(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1vAvKwCry4P4QeofW-RqZ_A 提取码:9pcd 复制这段内容后打开百度 ...
随机推荐
- 在chrome浏览器英文环境下为什么上面现行代码不起作用?
因为后面的客户端区域会覆盖前面的用户区域所以上面现行代码不起作用
- Spark学习摘记 —— Pair RDD行动操作API归纳
本文参考 参考<Spark快速大数据分析>动物书中的第四章"键值对操作",本篇是对RDD转化操作和行动操作API归纳的最后一篇 RDD转化操作API归纳:https:/ ...
- linux环境下搭建solr服务器--单机版
前提需要在安装好jdk和tomcat,本人用的是jdk1.8+tomcat8.5+solr4.10. 第一步:安装linux.jdk.tomcat.(这步都是比较简单的,就不多说了) 第二步:把sol ...
- MATLAB设计模糊控制器并用simulink仿真
一.设计模糊控制器1.1 创建项目文件夹在此路径如图 1.2 打开MATLAB打开MATLAB R2012a切换当前目录为上一步路径,如图 1.3 设计模糊控制器打开模糊控制器设计对话框 根据模糊控制 ...
- D3.js中国地图下钻
使用d3.js实现中国地图及中国地图下钻到省市区 在可视化开发中,地图是很重要的一个环节,很多时候需要展现的不仅是国家地图,还需要能从国家进入到省市,看到区这样的下钻过程,今天我们就来实现这个效果. ...
- 如何使用vue-cli搭建好的项目
本人是一枚前端小白,也是从零开始学习vue.js.由于闲着蛋疼,写一点自己的经验,可能有点low.是新手想上道的话,可以看看,如果有大神,也可以给我指导一下,小生感激不尽. 关于如何使用vue-cli ...
- python-杨辉三角形
[题目描述]输出n(0<n)行杨辉三角形,n由用户输入. [练习要求]请给出源代码程序和运行测试结果,源代码程序要求添加必要的注释. [输入格式]一行中输入1个整数n. [输出格式]输出n行杨辉 ...
- C#编写一个计算器
编写一个计算器,练习在窗体上添加控件.调整控件的布局,设置或修改控件属性,编写事件处理程序的方法. 代码: using System; using System.Collections.Generic ...
- 【每日日报】第三十四天---Scanner类的应用
1 今天继续看书 Scanner类的应用 1 package File; 2 import java.util.Scanner; 3 4 public class ScannerDemo { 5 pu ...
- Jackson 和 fastJSON 导包异常
内容 一.异常信息 HTTP Status 400 - type Status report message org.springframework.http.converter.HttpMessag ...