题面

Description

Hzwer成功培育出神牛细胞,可最终培育出的生物体却让他大失所望…
后来,他从某同校女神 牛处知道,原来他培育的细胞发生了基因突变,原先决定神牛特征的基因序列都被破坏了,神牛hzwer很生气,但他知道基因突变的低频性,说不定还有以下优秀基因没有突变,那么他就可以用限制性核酸内切酶把它们切出来,然后再构建基因表达载体什么的,后面你懂的…
黄学长现在知道了N个细胞的DNA序列,它们是若干个由小写字母组成的字符串。一个优秀的基因是两个字符串s1和s2,当且仅当s1是某序列的前缀的同时,s2是这个序列的后缀时,hzwer认为这个序列拥有这个优秀基因。
现在黄学长知道了M个优秀基因s1和s2,它们想知道对于给定的优秀基因,有多少个细胞的DNA序列拥有它。

Input

第一行:N,表示序列数
接下来N行,每行一个字符串,代表N个DNA序列,它们的总长为L1
接下来一个M,表示询问数
接下来M行,每行两个字符串s1和s2,由一个空格隔开,hzwer希望你能在线回答询问,所以s1等于“s1”的所有字符按字母表的顺序向后移动ans位(字母表是一个环),ans为上一个询问的答案,s2同理。例如ans=2 “s1”=qz
则s1=sb。对于第一个询问,ans=0
s1和s2的总长度为L2

Output

输出M行,每行一个数,第i行的数表示有多少个序列拥有第i个优秀基因。

Sample Input

10
emikuqihgokuhsywlmqemihhpgijkxdukjfmlqlwrpzgwrwozkmlixyxniutssasrriafu
emikuqihgokuookbqaaoyiorpfdetaeduogebnolonaoehthfaypbeiutssasrriafu
emikuqihgokuorocifwwymkcyqevdtglszfzgycbgnpomvlzppwrigowekufjwiiaxniutssasrriafu
emikuqihgokuorociysgfkzpgnotajcfjctjqgjeeiheqrepbpakmlixyxniutssasrriafu
emikuqihgokuorociysgfrhulymdxsqirjrfbngwszuyibuixyxniutssasrriafu
emikuqihgokuorguowwiozcgjetmyokqdrqxzigohiutssasrriafu
emikuqihgokuorociysgsczejjmlbwhandxqwknutzgdmxtiutssasrriafu
emikuqihgokuorociysgvzfcdxdiwdztolopdnboxfvqzfzxtpecxcbrklvtyxniutssasrriafu
emikuqihgokuorocsbtlyuosppxuzkjafbhsayenxsdmkmlixyxniutssasrriafu
emikuqihgokuorociysgfjvaikktsixmhaasbvnsvmkntgmoygfxypktjxjdkliixyxniutssasrriafu
10
emikuqihgokuorociysg yxniutssasrriafu
aiegqmedckgqknky eqpoowonnewbq
xfbdnjbazhdnhkhvb qrqgbnmlltlkkbtyn
bjfhrnfedlhrlolzfv qppxpoofxcr
zhdfpldcbjf stsidponnvnmmdvap
zhdfpldcbjfpjmjxdt gdstsidponnvnmmdvap
dlhjtphgfnjtnqnbhxr wxwmhtsrrzrqqhzet
bjfhrnfedlhrlolzfv frqppxpoofxcr
zhdfpldcbjf dponnvnmmdvap
ucyakgyxweakehes nondykjiiqihhyqvk

Sample Output

4
7
3
5
5
1
3
5
10
4

Hint

N<=2000

L1<=2000000

M<=100000

L2<=2000000

题解

有一个很简单的思路:假设以

S

1

S_1

S1​ 为前缀的串集合为

A

A

A ,以

S

2

S_2

S2​ 为后缀的串集合为

B

B

B ,我们求

A

B

|A\cap B|

∣A∩B∣.

那么,实践起来,就是字典树统计前缀后缀,字典树上用bitset维护集合。

这样的时间复杂度是

O

(

L

n

64

)

O(L\frac{n}{64})

O(L64n​) ,但是每个节点开个 bitset 空间会炸。

我们再想,该字典树有什么性质?

——只有

O

(

n

)

O(n)

O(n) 个叶子

因为一条无分叉的链上,bitset一定相等,所以,最终整棵树上本质不同的 bitset 最多有

2

n

1

2n-1

2n−1 个。

我们把一条无分叉链上的 bitset 只存一个,只保留最靠近叶子的那个,其余节点用一个指针指向那一个 bitset ,就可以省下大把空间。

CODE

#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<ctime>
#include<queue>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 3200005
#define LL long long
#define ULL unsigned long long
#define UI unsigned int
#define DB double
#define ENDL putchar('\n')
#define lowbit(x) (-(x) & (x))
#define FI first
#define SE second
#define eps (1e-4)
#define SI(x) set<x>::iterator
#define MI map<int,int>::iterator
#define BI bitset<2002>
LL read() {
LL f=1,x=0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f*x;
}
void putpos(LL x) {
if(!x) return ;
putpos(x/10); putchar('0'+(x%10));
}
void putnum(LL x) {
if(!x) putchar('0');
else if(x < 0) putchar('-'),putpos(-x);
else putpos(x);
}
void AIput(LL x,char c) {putnum(x);putchar(c);} int n,m,s,o,k;
BI b[100005];
int tre[MAXN][26],to[MAXN],cnt = 2,cnb;
void ins(int p,char *s,int n,int id) {
for(int i = 1;i <= n;i ++) {
int d = s[i]-'a';
if(!tre[p][d]) tre[p][d] = ++ cnt;
p = tre[p][d];
}
if(!to[p]) {
int t = ++ cnb;
b[t][id] = 1;
to[p] = t;
}
else {
b[to[p]][id] = 1;
}return ;
}
void dfs(int p) {
if(!p) return ;
int sm = 0,t = 0;
if(to[p]) sm = 1,t = to[p];
for(int i = 0;i < 26;i ++) {
if(tre[p][i]) {
dfs(tre[p][i]);
sm ++;
if(sm == 1) t = to[tre[p][i]];
else if(sm == 2) {
b[++ cnb] = b[t] | b[to[tre[p][i]]];
t = cnb;
}
else {
b[t] |= b[to[tre[p][i]]];
}
}
}
to[p] = t;
return ;
}
int query(int p,char *s,int n) {
for(int i = 1;i <= n;i ++) {
int d = s[i]-'a';
if(!tre[p][d]) return 0;
p = tre[p][d];
}return to[p];
}
char ss[MAXN],s1[MAXN],s2[MAXN];
int main() {
n = read();
for(int i = 1;i <= n;i ++) {
scanf("%s",ss + 1);
m = strlen(ss + 1);
ins(1,ss,m,i);
for(int j = 1;j*2 <= m;j ++) swap(ss[j],ss[m-j+1]);
ins(2,ss,m,i);
}
dfs(1);dfs(2);
m = read();
int las = 0;
while(m --) {
scanf("%s",s1 + 1);
scanf("%s",s2 + 1);
s = strlen(s1 + 1);
o = strlen(s2 + 1);
for(int i = 1;i <= s;i ++) s1[i] = (s1[i]-'a'+las) % 26 + 'a';
for(int i = 1;i <= o;i ++) s2[i] = (s2[i]-'a'+las) % 26 + 'a';
for(int i = 1;i*2 <= o;i ++) {
swap(s2[i],s2[o-i+1]);
}
BI as = b[query(1,s1,s)] & b[query(2,s2,o)];
las = as.count();
AIput(las,'\n');
}
return 0;
}

BZOJ4212 神牛的养成计划 (字典树,bitset)的更多相关文章

  1. [BZOJ4212]神牛的养成计划

    [BZOJ4212]神牛的养成计划 试题描述 Hzwer 成功培育出神牛细胞,可最终培育出的生物体却让他大失所望...... 后来,他从某同校女神 牛处知道,原来他培育的细胞发生了基因突变,原先决定神 ...

  2. 【BZOJ4212】神牛的养成计划 Trie树+可持久化Trie树

    [BZOJ4212]神牛的养成计划 Description Hzwer成功培育出神牛细胞,可最终培育出的生物体却让他大失所望...... 后来,他从某同校女神 牛处知道,原来他培育的细胞发生了基因突变 ...

  3. 【BZOJ-4212】神牛的养成计划 Trie树 + 可持久化Trie树

    4212: 神牛的养成计划 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 136  Solved: 27[Submit][Status][Discus ...

  4. BZOJ 4212: 神牛的养成计划

    4212: 神牛的养成计划 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 142  Solved: 30[Submit][Status][Discus ...

  5. hdu 5536 Chip Factory 字典树+bitset 铜牌题

    Chip Factory Time Limit: 18000/9000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)T ...

  6. 【bzoj4212】神牛的养成计划

    Portal --> bzoj4212 Description ​ 给你\(n\)个字符串,接下来有\(m\)个询问,每个询问由两个给定的字符串\(s_1\)和\(s_2\)组成,对于每个询问输 ...

  7. BZOJ.4212.神牛的养成计划(Trie 可持久化Trie)

    BZOJ 为啥hzw的题也是权限题啊 考虑能够匹配\(s1\)这一前缀的串有哪些性质.对所有串排序,能发现可以匹配\(s1\)的是一段区间,可以建一棵\(Trie\)求出来,设为\([l,r]\). ...

  8. BZOJ 4212: 神牛的养成计划 可持久化trie+trie

    思路倒是不难,但是这题卡常啊 ~ code: #include <bits/stdc++.h> #define N 2000004 #define M 1000005 #define SI ...

  9. LA 7043 International Collegiate Routing Contest 路由表 字典树离散化+bitset 银牌题

    题目链接:给你n(n<=3e4)个路由地址(注意有子网掩码现象), 路由地址:128.0.0.0/1的形式 要求你输出一个路由集合,其是给定的路由集合的补集,且个数越少越好 #include & ...

随机推荐

  1. 3D还原货拉拉女孩身亡真相,这一环值得反思!

    货拉拉女孩跳车身亡的消息,让人惋惜又震惊.司机多次偏离原始路线,女孩最终选择跳车,结果不幸身亡. 货拉拉女孩跳车真相被3D还原 有人质疑平台监管不力,造成如此惨剧,有人吐槽企业压榨员工,司机绕路是不得 ...

  2. 全新升级的AOP框架Dora.Interception[4]: 基于Lambda表达式的拦截器注册方式

    如果拦截器应用的目标类型是由自己定义的,Dora.Interception(github地址,觉得不错不妨给一颗星)可以在其类型或成员上标注InterceptorAttribute特性来应用对应的拦截 ...

  3. sql-扩展sql

    复制表结构 create table 表名 like 被复制的表名; -- 仅复制表表结构 oracle不支持 复制表结构和数据(子查询方式) CREATE TABLE 表名 [AS] SELECT ...

  4. 面试突击61:说一下MySQL事务隔离级别?

    MySQL 事务隔离级别是为了解决并发事务互相干扰的问题的,MySQL 事务隔离级别总共有以下 4 种: READ UNCOMMITTED:读未提交. READ COMMITTED:读已提交. REP ...

  5. ArrayList源码深度剖析,从最基本的扩容原理,到魔幻的迭代器和fast-fail机制,你想要的这都有!!!

    ArrayList源码深度剖析 本篇文章主要跟大家分析一下ArrayList的源代码.阅读本文你首先得对ArrayList有一些基本的了解,至少使用过它.如果你对ArrayList的一些基本使用还不太 ...

  6. spring-security 配置简介

    1.Spring Security 简介 Spring Security 是一个能够基于 Spring 的企业应用系统提供声明式的安全访问控制解决方案的安全框架.它提供了一组可以在 Spring 应用 ...

  7. vue2,vue指令和选项

    vue特点 mvvm框架 响应式(声明式) 组件化(支持自定义组件) 丰富的指令(Dom功能的抽象) 基于选项(template,data,computed,watch,methods) vue文档集 ...

  8. 5-5 SpringGateway 网关

    SpringGateway 网关 奈非框架简介 早期(2020年前)奈非提供的微服务组件和框架受到了很多开发者的欢迎 这些框架和Spring Cloud Alibaba的对应关系我们要知道 Nacos ...

  9. Educational Codeforces Round 132 (C,D) 题解 cf#1709

    昨晚打了这把EDU,赛后看了dalao们的C题代码豁然开朗恍然大悟 实在是太巧妙了 这场来说,D题的通过率比C题高太多了(估计很多人都在C题卡了然后没做D 先放题目链接 题目链接 C - Recove ...

  10. c++头文件的一个误导

    通常情况下,我们都认为c++的头文件是这样的: #include <bits/stdc++.h> using namespace std; int main() 但c++也可以用c的头文件 ...