Gomoku

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1319    Accepted Submission(s): 328

Problem Description
You are probably not familiar with the title, “Gomoku”, but you must have played it a lot. Gomoku is an abstract strategy board game and is also called Five in a Row, or GoBang. It is traditionally played with go pieces (black and white stones) on a go board
(19x19 intersections). Nowadays, standard chessboard of Gomoku has 15x15 intersections. Black plays first, and players alternate in placing a stone of their color on an empty intersection. The winner is the first player to get an unbroken row of five or more
stones horizontally, vertically, or diagonally. 




For convenience, we coordinate the chessboard as illustrated above. The left-bottom intersection is (0,0). And the bottom horizontal edge is x-axis, while the left vertical line is y-axis. 



I am a fan of this game, actually. However, I have to admit that I don’t have a sharp mind. So I need a computer program to help me. What I want is quite simple. Given a chess layout, I want to know whether someone can win within 3 moves, assuming both players
are clever enough. Take the picture above for example. There are 31 stones on it already, 16 black ones and 15 white ones. Then we know it is white turn. The white player must place a white stone at (5,8). Otherwise, the black player will win next turn. After
that, however, the white player also gets a perfect situation that no matter how his opponent moves, he will win at the 3rd move. 



So I want a program to do similar things for me. Given the number of stones and positions of them, the program should tell me whose turn it is, and what will happen within 3 moves.
 
Input
The input contains no more than 20 cases.

Each case contains n+1 lines which are formatted as follows.

n

x1 y1 c1

x2 y2 c2

......

xn yn cn

The first integer n indicates the number of all stones. n<=222 which means players have enough space to place stones. Then n lines follow. Each line contains three integers: xi and yi and ci. xi and yi are
coordinates of the stone, and ci means the color of the stone. If ci=0 the stone is white. If ci=1 the stone is black. It is guaranteed that 0<=xi,yi<=14, and ci=0 or 1. No two stones are placed
at the same position. It is also guaranteed that there is no five in a row already, in the given cases.

The input is ended by n=0.
 
Output
For each test case:



First of all, the program should check whose turn next. Let’s call the player who will move next “Mr. Lucky”. Obviously, if the number of the black stone equals to the number of white, Mr. Lucky is the black player. If the number of the black stone equals to
one plus the numbers of white, Mr. Lucky is the white player. If it is not the first situation or the second, print “Invalid.” 



A valid chess layout leads to four situations below:



1)Mr. Lucky wins at the 1st move. In this situation, print :



Place TURN at (x,y) to win in 1 move.



“TURN” must be replaced by “black” or “white” according to the situation and (x,y) is the position of the move. If there are different moves to win, choose the one where x is the smallest. If there are still different moves, choose the one where y is the smallest.



2)Mr. Lucky’s opponent wins at the 2nd move. In this situation, print:



Lose in 2 moves.



3)Mr. Lucky wins at the 3rd move. If so, print:



Place TURN at (x,y) to win in 3 moves.



“TURN” should replaced by “black” or “white”, (x,y) is the position where the Mr. Lucky should place a stone at the 1st move. After he place a stone at (x,y), no matter what his opponent does, Mr. Lucky will win at the 3[sup]rd[sup] step. If there
are multiple choices, do the same thing as described in situation 1. 



4)Nobody wins within 3 moves. If so, print:



Cannot win in 3 moves.
 
Sample Input
31
3 3 1
3 4 0
3 5 0
3 6 0
4 4 1
4 5 1
4 7 0
5 3 0
5 4 0
5 5 1
5 6 1
5 7 1
5 9 1
6 4 1
6 5 1
6 6 0
6 7 1
6 8 0
6 9 0
7 5 1
7 6 0
7 7 1
7 8 1
7 9 0
8 5 0
8 6 1
8 7 0
8 8 1
8 9 0
9 7 1
10 8 0
1
7 7 1
1
7 7 0
0
 
Sample Output
Place white at (5,8) to win in 3 moves.
Cannot win in 3 moves.
Invalid.
 

思路:1、推断先手能否在一步走赢,即是否存在一空白格子使得先手的棋子有连续的5个。

2、推断对手是否存在两个空白格子使得他可以得到连续的5个棋子,由于这样,先手就不能堵住后手。

3、枚举任一空白格子放先手棋子。则仅仅需对手方不存在“一空白格子使得棋子有连续的5个”,且先手方此时有"两个空白格子使得他可以得到连续的5个棋子",则先手胜。(攻防转换)

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
#define N 20
const int inf=0x3fffffff;
const double eps=1e-8;
int xx,yy;
int dx[4]={0,1,1,1};
int dy[4]={1,1,0,-1};
int g[N][N];
int bfs1(int v) //推断是否存在一个空白格子使棋子连成连续的5个
{
int i,j,k,x,y,sum;
for(i=0;i<15;i++)
{
for(j=0;j<15;j++)
{
if(g[i][j]==-1)
{
for(k=0;k<4;k++)
{
x=i+dx[k];
y=j+dy[k];
sum=1;
while(1)
{
if(x<0||x>=15||y<0||y>=15||g[x][y]!=v)
break;
sum++;
x+=dx[k];
y+=dy[k];
}
x=i-dx[k];
y=j-dy[k];
while(1)
{
if(x<0||x>=15||y<0||y>=15||g[x][y]!=v)
break;
sum++;
x-=dx[k];
y-=dy[k];
}
if(sum>=5)
{
xx=i;yy=j;
return 1;
}
}
}
}
}
return 0;
}
int bfs2(int v) //推断是否存在2个空白格子使棋子连成连续的5个
{
int i,j,k,x,y,sum,num=0;
for(i=0;i<15;i++)
{
for(j=0;j<15;j++)
{
if(g[i][j]==-1)
{
for(k=0;k<4;k++)
{
x=i+dx[k];
y=j+dy[k];
sum=1;
while(1)
{
if(x<0||x>=15||y<0||y>=15||g[x][y]!=v)
break;
sum++;
x+=dx[k];
y+=dy[k];
}
x=i-dx[k];
y=j-dy[k];
while(1)
{
if(x<0||x>=15||y<0||y>=15||g[x][y]!=v)
break;
sum++;
x-=dx[k];
y-=dy[k];
}
if(sum>=5)
{
if(num==1)
return 1;
num++;
break;
}
}
}
}
}
return 0;
}
int bfs3(int v) //情况3,
{
int i,j;
for(i=0;i<15;i++)
{
for(j=0;j<15;j++)
{
if(g[i][j]==-1)
{
g[i][j]=v;
if(bfs1(1-v)==0&&bfs2(v)==1)
{
xx=i;yy=j;
return 1;
}
g[i][j]=-1;
}
}
}
return 0;
}
int main()
{
int i,n,x,y,d,w,b,val;
while(scanf("%d",&n),n)
{
memset(g,-1,sizeof(g));
w=b=0;
for(i=0;i<n;i++)
{
scanf("%d%d%d",&x,&y,&d);
g[x][y]=d;
if(d==0)
w++;
else
b++;
}
if(w>b)
{
printf("Invalid.\n");
continue;
}
if(w==b)
val=1;
else
val=0;
if(bfs1(val))
{
if(val==0)
printf("Place white at (%d,%d) to win in 1 move.\n",xx,yy);
else
printf("Place black at (%d,%d) to win in 1 move.\n",xx,yy);
}
else if(bfs2(1-val))
printf("Lose in 2 moves.\n");
else
{
if(bfs3(val))
{
if(val==0)
printf("Place white at (%d,%d) to win in 3 moves.\n",xx,yy);
else
printf("Place black at (%d,%d) to win in 3 moves.\n",xx,yy);
}
else
printf("Cannot win in 3 moves.\n");
}
}
return 0;
}

hdu 3683 Gomoku (模拟、搜索)的更多相关文章

  1. HDU - 4431 Mahjong (模拟+搜索+哈希+中途相遇)

    题目链接 基本思路:最理想的方法是预处理处所有胡牌的状态的哈希值,然后对于每组输入,枚举每种新加入的牌,然后用哈希检验是否满足胡牌的条件.然而不幸的是,由于胡牌的状态数过多(4个眼+一对将),预处理的 ...

  2. [博弈] hdu 3683 Gomoku

    题意: 两个人下五子棋.给你现有棋盘,推断在三步之内的胜负情况. 输出分为几种. 1.棋盘不合法 2.黑或白在第一步赢下在(x,y)点,多个输出x最小的.y最小的. 3.输在第二步 4.黑或白在第三步 ...

  3. 【LOJ6254】最优卡组 堆(模拟搜索)

    [LOJ6254]最优卡组 题面 题解:常用的用堆模拟搜索套路(当然也可以二分).先将每个卡包里的卡从大到小排序,然后将所有卡包按(最大值-次大值)从小到大排序,并提前处理掉只有一张卡的卡包. 我们将 ...

  4. 【BZOJ4524】[Cqoi2016]伪光滑数 堆(模拟搜索)

    [BZOJ4524][Cqoi2016]伪光滑数 Description 若一个大于1的整数M的质因数分解有k项,其最大的质因子为Ak,并且满足Ak^K<=N,Ak<128,我们就称整数M ...

  5. 【BZOJ4345】[POI2016]Korale 堆(模拟搜索)

    [BZOJ4345][POI2016]Korale Description 有n个带标号的珠子,第i个珠子的价值为a[i].现在你可以选择若干个珠子组成项链(也可以一个都不选),项链的价值为所有珠子的 ...

  6. JavaScript在表格中模拟搜索多关键词搜索和筛选

    模拟搜索需要实现以下功能: 1.用户的模糊搜索不区分大小写,需要小写字母匹配同样可以匹配到该字母的大写单词. 2.多关键词模糊搜索,假设用户关键词以空格分隔,在关键词不完整的情况下仍然可以匹配到包含该 ...

  7. HDU 3683 模拟&amp;搜索

    给出五子棋残局,推断三步内能否分出胜负,玩家为当前该走旗子的颜色,下一步为白棋或黑棋不定. 依照顺序推断就可以: 1:推断棋盘是否合法,并确定玩家颜色 2:推断当前玩家颜色是否有一个必胜点,有玩家则在 ...

  8. HDU 3262 Seat taking up is tough (模拟搜索)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3262 题意:教室有n*m个座位,每个座位有一个舒适值,有K个学生在不同时间段进来,要占t个座位,必须是连 ...

  9. HDU 3262/POJ 3829 Seat taking up is tough(模拟+搜索)(2009 Asia Ningbo Regional)

    Description Students often have problems taking up seats. When two students want the same seat, a qu ...

随机推荐

  1. python学习笔记之11:图像用户界面

    这里会介绍如何创建python程序的图像用户界面(GUI),也就是那些带有按钮和文本框的窗口等.目前支持python的所谓“GUI工具包”的有很多,本文简要介绍最成熟的跨平台pythonGUI工具包- ...

  2. SQL Server 性能调优培训引言

    原文:SQL Server 性能调优培训引言 大家好,这是我在博客园写的第一篇博文,之所以要开这个博客,是我对MS SQL技术学习的一个兴趣记录. 作为计算机专业毕业的人,自己对技术的掌握总是觉得很肤 ...

  3. 浏览器被劫持到http://hao.169x.cn/?v=108的解决办法

    不管什么浏览器打开都是 http://hao.169x.cn/?v=108 ​1.下载wmi tool,(微软官网下载,我的下载地址是: http://120.52.73.52/download.mi ...

  4. Hbase结构简单、作法

    Hbase架构简单介绍.实践 版权声明:本文博主原创文章,博客,未经同意不得转载.

  5. 重新想象 Windows 8 Store Apps (24) - 文件系统: Application Data 中的文件操作, Package 中的文件操作, 可移动存储中的文件操作

    原文:重新想象 Windows 8 Store Apps (24) - 文件系统: Application Data 中的文件操作, Package 中的文件操作, 可移动存储中的文件操作 [源码下载 ...

  6. LoaderManager使用具体解释(二)---了解LoaderManager

    了解LoaderManager 这篇文章将介绍LoaderManager类,这是该系列的第二篇文章. 一:Loaders之前世界 二:了解LoaderManager 三:实现Loaders 四:实例: ...

  7. JS 查找遍历子节点元素

    function nextChildNode(node,clazz,tagName){ var count= node.childElementCount; for(var i=0;i<coun ...

  8. C# WinForm多线程(二)ThreadPool 与 Timer

    本文接上文,继续探讨WinForm中的多线程问题,再次主要探讨threadpool 和timer 一  ThreadPool 线程池(ThreadPool)是一种相对较简单的方法,它适应于一些需要多个 ...

  9. Android Splash界面支持用户点击 直接进入主界面

    转载请注明出处:http://blog.csdn.net/lmj623565791/article/details/23613403 现在大部分APP都有Splash界面,下面列一下Splash页面的 ...

  10. Spring Assert主张 (参议院检测工具的方法-主张)

    Web 收到申请表格提交的数据后都需要对其进行合法性检查,假设表单数据是不合法的,该请求将被拒绝.分类似的,当我们写的类方法,该方法还经常需要组合成参 法国检查.假设参议院不符合要求,方法通过抛出异常 ...