http://poj.org/problem?id=1189

Description

有一个三角形木板,竖直立放。上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1)。每颗钉子和周围的钉子的距离都等于d,每一个格子的宽度也都等于d,且除了最左端和最右端的格子外每一个格子都正对着最以下一排钉子的间隙。 

让一个直径略小于d的小球中心正对着最上面的钉子在板上自由滚落,小球每碰到一个钉子都可能落向左边或右边(概率各1/2)。且球的中心还会正对着下一颗将要碰上的钉子。比如图2就是小球一条可能的路径。 

我们知道小球落在第i个格子中的概率pi=pi=,当中i为格子的编号,从左至右依次为0,1,...,n。 

如今的问题是计算拔掉某些钉子后,小球落在编号为m的格子中的概率pm。

假定最以下一排钉子不会被拔掉。比如图3是某些钉子被拔掉后小球一条可能的路径。 

Input

第1行为整数n(2 <= n <= 50)和m(0 <= m <= n)。下面n行依次为木板上从上至下n行钉子的信息,每行中'*'表示钉子还在,'.'表示钉子被拔去,注意在这n行中空格符可能出如今不论什么位置。

Output

仅一行,是一个既约分数(0写成0/1),为小球落在编号为m的格子中的概pm。既约分数的定义:A/B是既约分数。当且仅当A、B为正整数且A和B没有大于1的公因子。

Sample Input

5 2
*
* .
* * *
* . * *
* * * * *

Sample Output

7/16
/**
poj1189 简单dp
题目大意:又是中文题~
解题思路; 总共会出现2^n种情况,我们一開始就如果有2^n个球在(1,1)点往下落。 对于每个没有挖掉的钉子(i,j):dp[i+1][j]+=dp[i][j]/2; dp[i+1][j+1]+=dp[i][j]/2;
对于挖掉的钉子(i,j):dp[i+2][j+1]+=dp[i][j];
*/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long LL; bool a[2555];
int n,m;
LL dp[55][55]; LL gcd(LL x,LL y)
{
if(y==0)return x;
return gcd(y,x%y);
} int main()
{
while(~scanf("%d%d",&n,&m))
{
int k=1;
for(int i=1; i<=n; i++)
{
for(int j=1; j<=i; j++)
{
char str[12];
scanf("%s",str);
if(str[0]=='*')
{
a[k++]=true;
}
else
{
a[k++]=false;
}
//printf("%d\n",a[k-1]);
}
//puts("");
}
memset(dp,0,sizeof(dp));
dp[1][1]=1LL<<n;
for(int i=1; i<=n; i++)
{
int x=i*(i-1)/2;
for(int j=1; j<=i; j++)
{
if(a[j+x])
{
dp[i+1][j]+=dp[i][j]/2;
dp[i+1][j+1]+=dp[i][j]/2;
}
else
{
dp[i+2][j+1]+=dp[i][j];
}
}
}
LL x=1LL<<n;
LL y=dp[n+1][m+1];
LL g=gcd(x,y);
printf("%lld/%lld\n",y/g,x/g);
}
return 0;
}

poj1189 简单dp的更多相关文章

  1. HDU 1087 简单dp,求递增子序列使和最大

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  2. Codeforces Round #260 (Div. 1) A. Boredom (简单dp)

    题目链接:http://codeforces.com/problemset/problem/455/A 给你n个数,要是其中取一个大小为x的数,那x+1和x-1都不能取了,问你最后取完最大的和是多少. ...

  3. codeforces Gym 100500H A. Potion of Immortality 简单DP

    Problem H. ICPC QuestTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100500/a ...

  4. 简单dp --- HDU1248寒冰王座

    题目链接 这道题也是简单dp里面的一种经典类型,递推式就是dp[i] = min(dp[i-150], dp[i-200], dp[i-350]) 代码如下: #include<iostream ...

  5. poj2385 简单DP

    J - 简单dp Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     64bit ...

  6. hdu1087 简单DP

    I - 简单dp 例题扩展 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     ...

  7. poj 1157 LITTLE SHOP_简单dp

    题意:给你n种花,m个盆,花盆是有顺序的,每种花只能插一个花盘i,下一种花的只能插i<j的花盘,现在给出价值,求最大价值 简单dp #include <iostream> #incl ...

  8. hdu 2471 简单DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2571 简单dp, dp[n][m] +=(  dp[n-1][m],dp[n][m-1],d[i][k ...

  9. Codeforces 41D Pawn 简单dp

    题目链接:点击打开链接 给定n*m 的矩阵 常数k 以下一个n*m的矩阵,每一个位置由 0-9的一个整数表示 问: 从最后一行開始向上走到第一行使得路径上的和 % (k+1) == 0 每一个格子仅仅 ...

随机推荐

  1. 基于visual Studio2013解决C语言竞赛题之0521圆盘求和

     题目

  2. C++标准库类型vector及迭代器iterator简介

    Vector是C++标准库类型,称为容器,一个容器中的所有对象必须是同一种类型的.与数组相比,其最大的优点就是动态增长.Vector是一个类模板,并不是数据类型,而vector<int>和 ...

  3. android JB2连拍降速原理介绍

    1.HAL层 (1)alps\mediatek\platform\mt6589\hardware\camera\core\camshot\MultiShot\MultiShot.cpp sleep实现 ...

  4. Datagridview列绑定数据

    属性最下面的Column项: 把每一列的字段绑定,更改显示的标题. 数据绑定代码: string sql = "select IncomeExpendTypeID , TypeName , ...

  5. 个人mysql配置命令

    Microsoft Windows [版本 6.1.7601]版权所有 (c) 2009 Microsoft Corporation.保留所有权利. C:\Windows\system32>cd ...

  6. linux指令(目录类操作指令)

    pwd 显示当前所在的工作目录 cd 目标目录    例如cd  /boot/grub 从当前目录切换到某个目录 cd  切换到根目录 cd.. 切换到当前目录的上层目录 ls  显示当前目录下的内容 ...

  7. hdu4717 The Moving Points(二分做法)

    这道题看了大家都是用三分做的,其实这道题也是可以用二分来做的,就是利用一下他们的单调性. 对于N个点,总共要考虑N(N+1)/2个距离,距离可以用二次函数表示,而且开口都是向上的. 下面具体说一下二分 ...

  8. SQL之概念

    SQL即结构化查询语言,是一个功能强大的数据库语言,可以分为: 1.DML即数据操作语言,用于检索或者修改数据: 2.DDL即数据定义语言,用于定义数据的结构,如创建.修改.删除等: 3.DCL即数据 ...

  9. oralce 简单错误汇集。。。。。

    1.ora-12560 TNS:协议适配器错误 实例名被错误修改或者oracle 服务没有正常启动.

  10. C语言数据结构----栈的定义及实现

    本节主要说的是数据结构中的栈的基本定义和实现的方式,其中实现的方式采用的是复用顺序表和单向链表的方式. 一.栈的基本定义 1.栈是一种特殊的线性表,只能从固定的方向进出,而且栈进出的基本原则是:先进栈 ...