洛谷P4141消失之物
题目描述
ftiasch 有 N 个物品, 体积分别是 W1, W2, …, WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N – 1 物品装满容积为 x 的背包,有几种方法呢?” — 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。
输入输出格式
输入格式:
第1行:两个整数 N (1 ≤ N ≤ 2 × 10^3)N(1≤N≤2×103) 和 M (1 ≤ M ≤ 2 × 10^3)M(1≤M≤2×103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, …, WN, 物品的体积。
输出格式:
一个 N × M 的矩阵, Count(i, x)的末位数字。
This DP is pretty hard.
First we should know that F[i][j] means that how many funcation what we can have when we put i's stuff in the bag which has j's volume.
If the i's stuff had to taken, it wil be f[i-1][j-w[i]], else, it will be f[i-1][j], So we can get the funcation :f[i][j]=f[i-1][j]+f[i-1][j-w[i];
we can use rounded array change it to f[j]=f[j]+f[j-w[i]].
So, how can we get the count ?
we had to enumeration whitch stuff we had lost.
if w[i]>j, that means, all of the answer has include the stuff i, because it was bigger than the volume. Therefore, the answer should be f[j] , which means take all of the answer.
if w[i]<=j, that means there are some anwer has be counted. what we should do is minus the rest of stuff(except i) to pull in j-w[i]. which is f[j]-c[i][j-w[i]]
if w[i]==0 , the c[i][j] will be 1.
that's all.
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#define in(a) a=read()
#define REP(i,k,n) for(int i=k;i<=n;i++)
using namespace std;
inline int read(){
int x=,f=;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
f=-;
for(;isdigit(ch);ch=getchar())
x=x*+ch-'';
return x*f;
}
int n,m;
int f[],c[][],w[];
int main(){
in(n),in(m);
REP(i,,n) in(w[i]);
f[]=;
REP(i,,n)
for(int j=m;j>=w[i];j--)
f[j]=(f[j]+f[j-w[i]])%;
REP(i,,n){
c[i][]=;
REP(j,,m){
if(j<w[i]) c[i][j]=f[j];
else c[i][j]=(f[j]-c[i][j-w[i]]+)%;
printf("%d",c[i][j]);
}
printf("\n");
}
return ;
}
洛谷P4141消失之物的更多相关文章
- 洛谷P4141 消失之物——背包
题目:https://www.luogu.org/problemnew/show/P4141 竟然是容斥:不选 i 物品只需减去选了 i 物品的方案: 范围原来是2*10^3而不是2*103啊... ...
- 洛谷P4141消失之物(背包经典题)——Chemist
题目地址:https://www.luogu.org/problemnew/show/P4141 分析:这题当然可以直接暴力枚举去掉哪一个物品,然后每次暴力跑一遍背包,时间复杂度为O(m*n^2),显 ...
- [洛谷P4141] 消失之物「背包DP」
暴力:暴力枚举少了哪个,下面套一个01背包 f[i][j]表示到了i物品,用了j容量的背包时的方案数,f[i][j]=f[i-1][j]+f[i-1][j-w[i]]O(n^3) 优化:不考虑消失的, ...
- 洛谷P4141 消失之物 题解 背包问题扩展
题目链接:https://www.luogu.com.cn/problem/P4141 题目大意: 有 \(n\) 件物品,求第 \(i\) 件物品不能选的时候(\(i\) 从 \(1\) 到 \(n ...
- P4141 消失之物
目录 链接 思路 代码 链接 P4141 消失之物 思路 f[N];//表示删掉物品后能出现容积为i的方案数 a[N];//单纯0-1背包的方案数asd 那么就先求出a[i]来,然后转移就是 if(j ...
- [BZOJ 2287/POJ openjudge1009/Luogu P4141] 消失之物
题面: 传送门:http://poj.openjudge.cn/practice/1009/ Solution DP+DP 首先,我们可以很轻松地求出所有物品都要的情况下的选择方案数,一个简单的满背包 ...
- P4141 消失之物(背包)
传送门 太珂怕了……为什么还有大佬用FFT和分治的…… 首先如果没有不取的限制的话就是一个裸的背包 然后我们考虑一下,正常的转移的话代码是下面这个样子的 ;i<=n;++i) for(int j ...
- Luogu P4141 消失之物 背包 分治
题意:给出$n$个物品的体积和最大背包容量$m$,求去掉一个物品$i$后,装满体积为$w\in [1,m]$背包的方案数. 有 N 个物品, 体积分别是 W1, W2, …, WN. 由于她的疏忽, ...
- luogu p4141 消失之物(背包dp+容斥原理)
题目传送门 昨天晚上学长讲了这题,说是什么线段树分治,然后觉得不可做,但那还不是正解,然后感觉好像好难的样子. 由于什么鬼畜的分治不会好打,然后想了一下$O(nm)$的做法,想了好长时间觉得这题好像很 ...
随机推荐
- eclipse 关闭控制台 自动弹出
Eclipse的控制台console有时候经常的跳出来,非常的烦人! 尤其是在调试期间跳出,以下是分享一下设置操作: 让它不经常的调出来,可以按下面的操作去掉它: windows -> p ...
- SQL中的全局变量和局部变量(@@/@)
在SQL中,我们常常使用临时表来存储临时结果,对于结果是一个集合的情况,这种方法非常实用,但当结果仅仅是一个数据或者是几个数据时,还要去建一个表,显得就比较麻烦,另外,当一个SQL语句中的某些元素经常 ...
- bzoj千题计划226:bzoj2763: [JLOI2011]飞行路线
http://www.lydsy.com/JudgeOnline/problem.php?id=2763 这也算分层图最短路? dp[i][j]到城市i,还剩k次免费次数的最短路 #include&l ...
- bzoj千题计划222:bzoj2329: [HNOI2011]括号修复(fhq treap)
http://www.lydsy.com/JudgeOnline/problem.php?id=2329 需要改变的括号序列一定长这样 :)))((( 最少改变次数= 多余的‘)’/2 [上取整] + ...
- Zephir入门教程一
一.如何安装 zephir-安装和初体验:http://blog.csdn.net/u011142688/article/details/51619811 二.如何使用 需要切到工作目录下,也就是co ...
- [软件]在浏览器里添加MarkDown Here(插件)
1. 先来说说这个插件的作用是什么: 用于在网页一些编辑文本的地方, 使用MacDown编辑文本 支持大部分浏览器, https://github.com/adam-p/markdown-here ...
- ARC 之内存转换
CHENYILONG Blog ARC 之内存转换 技术博客http://www.cnblogs.com/ChenYilong/ 新浪微博http://weibo.com/luohanchenyilo ...
- 第11月第20天 sqlite3_open xcode mysql connector
1. sqlite3_open 死锁 * thread #1, queue = 'com.apple.main-thread', stop reason = signal SIGSTOP frame ...
- Chrome插件笔记之content_scripts
一.概论 说这个之前先看一个段子,讲的是甲方有一奇葩客户,这客户看一网站某些样式很别扭不得劲,非要让乙方修改,乍一听没毛病,但关键是这网站不是乙方家的,根本没有修改权限,怎么办,客户就是上帝,上帝的要 ...
- innobackupex不停库的数据备份并恢复到别的服务器上【转】
1.innobackupex原理: 备份原理 1).首先会开启一个后台检测进程,实时检测myql redo的变化,一旦发现redo中有新日志写入,立即将日志记入后台日志文件xtrabackup_log ...