传送门

先考虑树,树是一个二分图。

看到是二分图并且每次是对两边的同色的点反色可以想到转化:让奇数层的点为黑,偶数为白,变成每次可以交换两个点的颜色。

把黑看成 \(-1\),白看成 \(1\),那么求一个子树和,考虑每一条边的贡献可以得到 \(ans=\sum_{i=1}^{n} |sum_i|\)

如果根的 \(sum\) 不为 \(0\),那么肯定是无解的。

对于基环树,先考虑奇环。

断开奇环的一条边 \((u,v)\),变成树,\(u,v\) 肯定是同一边的点。

操作一次 \((u,v)\) 相当于可以两边可以同时新增加白点/黑点,也就是可以把根的 \(sum\) 用这两个点来变成 \(0\),(\(sum\) 必须为偶数)平均分配之后用树的做法即可。

考虑偶环。

断开偶环的一条边 \((u,v)\),变成树,\(u,v\) 肯定不是同一边的点。

操作一次 \((u,v)\) 相当于是让左右的点走了一次捷径。

设用的次数为 \(x\)。

如果一个点同时包含或不包含 \(u,v\) 两个点,那么 \(sum\) 一定不变。

否则加上或者减去 \(x\)。

相当是是要求 \(|x|+\sum |sum_i-x| + \sum |sum_i+x|\)

经典问题,排序之后取中位数即可。

# include <bits/stdc++.h>
using namespace std;
typedef long long ll; const int maxn(1e5 + 5); struct Edge { int to, next; }; int n, m, first[maxn], cnt, sum[maxn], fa[maxn], dsu[maxn], deep[maxn], a, b, ans, val[maxn];
Edge edge[maxn << 1]; inline int Find(int x) { return (dsu[x] ^ x) ? dsu[x] = Find(dsu[x]) : x; } inline void Add(int u, int v) {
edge[cnt] = (Edge){v, first[u]}, first[u] = cnt++;
edge[cnt] = (Edge){u, first[v]}, first[v] = cnt++;
} void Dfs(int u, int ff, int d) {
int e, v;
sum[u] = d;
for (e = first[u]; ~e; e = edge[e].next)
if ((v = edge[e].to) ^ ff) {
deep[v] = deep[u] + 1;
fa[v] = u, Dfs(v, u, -d);
sum[u] += sum[v];
}
} int main() {
int i, u, v, len = 1;
memset(first, -1, sizeof(first));
scanf("%d%d", &n, &m);
if (n & 1) return puts("-1"), 0;
for (i = 1; i <= n; ++i) dsu[i] = i;
for (i = 1; i <= m; ++i) {
scanf("%d%d", &u, &v);
if (Find(u) ^ Find(v)) Add(u, v), dsu[Find(u)] = Find(v);
else a = u, b = v;
}
if (!a) {
Dfs(1, 0, 1);
if (sum[1]) return puts("-1"), 0;
}
else {
Dfs(a, 0, 1);
if (deep[b] & 1) {
if (sum[a]) return puts("-1"), 0;
for (i = b; i ^ a; i = fa[i]) val[++len] = sum[i], sum[i] = 0;
sort(val + 1, val + len + 1), v = val[(len + 1) >> 1];
for (i = 1; i <= len; ++i) ans += abs(val[i] - v);
}
else {
if (sum[a] & 1) return puts("-1"), 0;
v = sum[a] >> 1, ans = abs(v), sum[a] = 0;
for (i = b; i ^ a; i = fa[i]) sum[i] -= v;
}
}
for (i = 1; i <= n; ++i) ans += abs(sum[i]);
printf("%d\n", ans);
return 0;
}

Atcoder:AGC004F Namori的更多相关文章

  1. 2017国家集训队作业[agc004f]Namori

    2017国家集训队作业[agc004f]Namori 题意: 给你一颗树或环套树,树上有\(N\)个点,有\(M\)条边.一开始,树上的点都是白色,一次操作可以选择一条端点颜色相同的边,使它的端点颜色 ...

  2. AtCoder AGC004F Namori (图论)

    题目链接 https://atcoder.jp/contests/agc004/tasks/agc004_f 题解 神仙题.. 首先考虑树的情况,树是二分图,因此假设我们对二分图进行黑白染色,那么操作 ...

  3. AtCoder:C - Nuske vs Phantom Thnook

    C - Nuske vs Phantom Thnook https://agc015.contest.atcoder.jp/tasks/agc015_c 题意: n*m的网格,每个格子可能是蓝色, 可 ...

  4. AGC004F Namori 树形DP、解方程(?)

    传送门 因为不会列方程然后只会树上的,被吊打了QAQ 不难想到从叶子节点往上计算答案.可以考虑到可能树上存在一个点,在它的儿子做完之后接着若干颜色为白色的儿子,而当前点为白色,只能帮助一个儿子变成黑色 ...

  5. [agc004f]Namori 贪心

    Description ​ 现在给你一张NN个点MM条边的连通图,我们保证N−1≤M≤NN−1≤M≤N,且无重边和自环. ​ 每一个点都有一种颜色,非黑即白.初始时,所有点都是白色的. ​ 想通过执行 ...

  6. [AGC004F] Namori

    Description 现在给你一张N个点M条边的连通图,我们保证N−1≤M≤N,且无重边和自环. 每一个点都有一种颜色,非黑即白.初始时,所有点都是白色的. "全"想通过执行若干 ...

  7. AtCoder刷题记录

    构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...

  8. 贪心/构造/DP 杂题选做Ⅲ

    颓!颓!颓!(bushi 前传: 贪心/构造/DP 杂题选做 贪心/构造/DP 杂题选做Ⅱ 51. CF758E Broken Tree 讲个笑话,这道题是 11.3 模拟赛的 T2,模拟赛里那道题的 ...

  9. NOIp模拟赛二十九

    又是受虐的一天呢~接下来四天都要打模拟赛QAQ 今日分数:0(100)+100+0=100 A题O(读入)结论题判断结果时没return 0被subtask卡成0分,喜提fstQAQ,B题DP,C题不 ...

随机推荐

  1. java后端树形菜单使用递归方法

    数据库的设计 使用ssm 实体类 mapper映射文件查询出所有的菜单 使用递归方法

  2. 一步步Cobol 400上手自学入门教程06 - 子程序调用

    子程序的命名通常和普通程序的命名方式相同.但是需要注意的是,对于子程序而言,不可将其前缀命名为以下这几个名字. AFB           AFH           CBC          CEE ...

  3. 多条记录的同一字段组合成一个字符串 FOR XML PATH

    stuff(select ',' + fieldname from tablename for xml path('')),1,1,'') 这一整句的作用是将多行fieldname字段的内容串联起来, ...

  4. POJ 2661

    #include<iostream> #include<stdio.h> using namespace std; int main() { //freopen("a ...

  5. C# 多线程五之Task(任务)一

    1.简介 为什么MS要推出Task,而不推Thread和ThreadPool,以下是我的见解: (1).Thread的Api并不靠谱,甚至MS自己都不推荐,原因,它将整个Thread类都不开放给Win ...

  6. iOS事件分发

    前段时间项目有一个需求,要在点击闪屏的时候做一些处理,刚接到这个需求觉得很简单啊,在原有的view上加个button或者手势识别啥的,后面实现的时候发现还是有点坑.无论我在闪屏上面加button还是手 ...

  7. javascript 获取当前浏览器窗口宽高

    获取当前浏览器窗口宽度:document.documentElement.clientWidth;获取当前浏览器窗口高度:document.documentElement.clientHeight; ...

  8. Java运行时,指定程序文件的编码

    在命令行cmd里面运行 java -jar test.jar的时候,发现里面执行的汉字发生乱码.原来指定的是UTF-8. 解决如下: java -Dfile.encoding=UTF-8 -jar - ...

  9. Linux进程间的通信

    一.管道 管道是Linux支持的最初Unix IPC形式之一,具有以下特点: A. 管道是半双工的,数据只能向一个方向流动: B. 需要双工通信时,需要建立起两个管道: C. 只能用于父子进程或者兄弟 ...

  10. 使用vertical-align实现垂直对齐

    关于垂直对齐,之前研究过好几次了,但感觉每次都没研究透彻,做了几个效果,就觉得自己掌握了,实在是自欺欺人.真乃搞技术的大忌. 这两天又下定决心重新开始研究vertical-allign这个高深莫测的属 ...