题意

有一个长度为 \(n\) 的数列 \(a\),有 \(m\) 个 操作,每个操作是给 \(a[l_i,r_i]\) 中的数都加一,一个操作有 \(p_i\) 的概率执行(否则不执行)。一个性质是任意两个区间不相交或完全包含(可重叠)。问执行完所有操作后 \(a\) 中最大值的期望。

\(n\le 10^5,m\le 5000,a\le 10^9\) 。

分析

想象一下多个不相交或完全包含的区间,他们的结构其实是一棵树。外层为父亲,内层为儿子。

要计算的是最大值的期望,而这个最大值是由多个操作得到的,所以无法分别计算期望再合并。解决这个问题的方法是先算出概率,再得到期望。

到最后,一个区间 \([l,r]\) 的最大值只可能是 \([mx,mx+q]\) 中的数(\(mx\) 为原序列中这个区间的最大值)。那么那么我们可以用这个东西来 dp。

设 \(f[x][j]\) 表示 \(x\) 点子树中的操作结束后,\(x\) 点表示的这个区间的最大值小于等于 \(mx_x+j\) 的概率。这样设计是因为若是等于的话,计算的时候转移还是要求前缀和,相当于是小于等于了。若 \(x\) 这个操作不执行,那么从子树 \(v\) 转移,子树 \(v\) 需要让其最后的区间最大值小于等于 \(mx_x+j\) ;若执行,那么子树的需要让其区间最大值小于等于 \(mx_i+j-1\) 。因此有转移

\[f[x][j]=p_x\prod f[v][mx_x+j-1-mx_v]+(1-p_x)\prod f[v][mx_x+j-mx_v]
\]

代码

#include<bits/stdc++.h>
using namespace std;
const int maxq=5e3+5;
const int maxm=1e4+5;
const int maxn=1e5+1;
int n,a[maxn],m,M,mx;
inline void Max(int &x,int y) {x=max(x,y);}
struct Q {
int l,r,mx;
double p;
inline bool operator < (const Q &b) const {return l!=b.l?l<b.l:r>b.r;}
} q[maxq];
namespace rmq {
const int maxj=17;
int f[maxn][maxj],bin[maxn];
void build() {
for (int i=2;i<=n;++i) bin[i]=bin[i>>1]+1;
for (int i=1;i<=n;++i) f[i][0]=a[i];
for (int j=1;j<maxj;++j) for (int i=1;i<=n;++i) {
int x=i+(1<<(j-1));
f[i][j]=f[i][j-1];
if (x<=n && f[x][j-1]>f[i][j]) f[i][j]=f[x][j-1];
}
}
inline int query(int l,int r) {
int x=bin[r-l+1];
return max(f[l][x],f[r-(1<<x)+1][x]);
}
}
namespace tree {
vector<int> g[maxq];
double f[maxq][maxm];
inline void add(int x,int y) {g[x].push_back(y);}
void build() {
sort(q+1,q+m+1);
static int sta[maxq],top;
q[sta[top=0]=0]=(Q){1,n,min(mx,m),0};
for (int i=1;i<=m;++i) {
Q &p=q[i];
for (;top>0 && p.l>q[sta[top]].r;--top) add(sta[top-1],sta[top]);
sta[++top]=i;
}
for (;top;--top) add(sta[top-1],sta[top]);
}
void dfs(int x) {
if (g[x].empty()) {
f[x][0]=1-q[x].p;
for (int i=1;i<=M;++i) f[x][i]=1;
return;
}
for (const int &v:g[x]) dfs(v);
for (int j=0;j<=m;++j) {
double fir=j?q[x].p:0,sec=1-q[x].p;
for (const int &v:g[x]) {
int the=q[x].mx-q[v].mx+j;
fir*=f[v][the-1];
sec*=f[v][the];
}
f[x][j]=fir+sec;
}
for (int j=m+1;j<=M;++j) f[x][j]=f[x][j-1];
}
double calc() {
double ret=mx;
for (int i=1;i<=m;++i) ret+=(f[0][i]-f[0][i-1])*i;
return ret;
}
}
int main() {
#ifndef ONLINE_JUDGE
freopen("test.in","r",stdin);
#endif
scanf("%d%d",&n,&m),M=m<<1;
for (int i=1;i<=n;++i) {
scanf("%d",a+i);
Max(mx,a[i]);
}
if (mx>m) for (int i=1;i<=n;++i) a[i]=max(0,a[i]+m-mx);
rmq::build();
for (int i=1;i<=m;++i) {
scanf("%d%d%lf",&q[i].l,&q[i].r,&q[i].p);
q[i].mx=rmq::query(q[i].l,q[i].r);
}
tree::build();
tree::dfs(0);
double ans=tree::calc();
printf("%.10lf\n",ans);
return 0;
}

Codeforces 494C - Helping People的更多相关文章

  1. [Codeforces-div.1 494C] Helping People

    [Codeforces-div.1 494C] Helping People 试题分析 不难注意到题目所给的性质是一棵树,所以肯定是树形dp. 那么期望没有办法合并,我们还有一种最笨的方法就是求出概率 ...

  2. CodeForces 1105E Helping Hiasat 最大独立集

    Helping Hiasat 题解: 如果我们把连续的2出现的人都相互连边的话, 题目就是问最大独立集的答案是多少. 求最大独立集可以将图变成反图, 然后求最大团. 代码: #include<b ...

  3. 【Codeforces 1105E】Helping Hiasat

    Codeforces 1105 E 题意:给你m个事件,每个事件可能是以下两种之一: \(1\),代表此时可以更改用户名 \(2\) \(s\),代表\(s\)来查看是否用户名与其名字相符 一共有\( ...

  4. Codeforces Round #533 (Div. 2) E - Helping Hiasat 最大团

    E - Helping Hiasat 裸的最大团,写了一种 2 ^ (m / 2)  * (m / 2)的复杂度的壮压, 应该还有更好的方法. #include<bits/stdc++.h> ...

  5. Codeforces #282 div 1 C Helping People 题解

    CF 282 C Helping People 题解 [原题] time limit per test 2 seconds memory limit per test 512 megabytes in ...

  6. Codeforces Round #533 (Div. 2) E. Helping Hiasat(最大独立集)

    题目链接:https://codeforces.com/contest/1105/problem/E 题意:有 n 个事件,op = 1 表示我可以修改昵称,op = 2 表示一个名为 s_i 的朋友 ...

  7. Solution -「CF 494C」Helping People

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\) 和 \(m\) 个操作,第 \(i\) 个操作有 \(p_i\) 的概率将 \([l_i,r_ ...

  8. Codeforces Round #802 (Div. 2)C. Helping the Nature(差分)

    题目链接 题目大意: 给你一个有n个元素的数组a,你可以通过一下三种操作使数组的每一个值都为0: 选择一个下标i,然后让a[1],a[2]....a[ i ] 都减一; 选择一个下标i,然后让a[i] ...

  9. Codeforces Round #439 (Div. 2) Problem E (Codeforces 869E) - 暴力 - 随机化 - 二维树状数组 - 差分

    Adieu l'ami. Koyomi is helping Oshino, an acquaintance of his, to take care of an open space around ...

随机推荐

  1. Vue购物车

    index.html <!DOCTYPE html><html>    <head>        <meta charset="utf-8&quo ...

  2. Arduino入门笔记(2):Arduino的开发和virtualbreadboard仿真环境

    欢迎加入讨论群 64770604 1.开发环境 (1)下载开发环境 Arduino的开发环境从http://arduino.cc/en/Main/Software官网下载即可,分为windows版本. ...

  3. OC实现个人中心页面

    AppDelegate.m: - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDic ...

  4. 【MEVN架构】mongodb+ express + vue + nodejs 搭建后台

    前端技术栈:vue2 + vuex + vue-router + webpack + ES6/7 + less + element-ui 服务端技术栈:nodejs + express + mongo ...

  5. Codeforces round 1103

    Div1 534 我可能还太菜了.jpg 果然我只是Div 2 选手 A (这题是Div1吗... 直接构造:竖着放的在第一行和第二行,然后横着放的时候直接放在第三行就行. #include < ...

  6. WPF 简易进度条效果

    最近做一个项目,看到以前同事写的进度条效果不错,所以,拿来简化了下,不炫,但是项目中还是够用的. 还是,先来看下调用以后的效果 1.因为ProgressbBar的Foreground显示不得不一样,所 ...

  7. 解决Git在添加ignore文件之前就提交了项目无法再过滤问题

    由于未添加ignore文件造成提交的项目很大(包含生成的二进制文件).所以我们可以将编译生成的文件进行过滤,避免添加到版本库中了. 首先为避免冲突需要先同步下远程仓库 $ git pull 在本地项目 ...

  8. 如何完全卸载VS2010(亲自体验过) (转)

    1.首先用360卸载,当卸载完成后,提示有残余的话,就强力清除 2,接着,下载IobitUninstaller工具 3.按照下面进行卸载 1.Microsoft .NET Framework 4 框架 ...

  9. CS50.4

    1, PDF,portable document format 便携式文档格式 2, 关于文本编辑器(文字编辑器)和文档编辑器(文字处理器),前者可用来写程序的源代码?名字挺难分辨的. *3, “-o ...

  10. Express模版引擎hbs备忘

    最近几天折腾了下express,想找个合适的模版引擎,下面是一些折腾过程的备忘 选择标准 选择一门模版语言时,可能会考虑的几点 语法友好(micro tmpl那种语法真是够了) 支持模版嵌套(子模版的 ...