MySQL(Innodb)索引的原理
引言
回想四年前,我在学习mysql的索引这块的时候,老师在讲索引的时候,是像下面这么说的
索引就像一本书的目录。而当用户通过索引查找数据时,就好比用户通过目录查询某章节的某个知识点。这样就帮助用户有效地提高了查找速度。所以,使用索引可以有效地提高数据库系统的整体性能。
嗯,这么说其实也对。但是呢,大家看完这种说法,其实可能还是觉得太抽象了!因此呢,我还想再深入的细说一下,所以就有了此文!
需要说明的是,我说的内容只在Mysql的Innodb引擎中是成立的。在Sql Server、oracle、Mysql的Mysiam引擎中的正确性,不一定成立!
OK,废话不多说,开始啰嗦!
正文
索引的科普
先引进聚簇索引和非聚簇索引的概念!
我们平时在使用的Mysql中,使用下述语句
CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name
[USING index_type]
ON tbl_name (index_col_name,...)
index_col_name:
col_name [(length)] [ASC | DESC]
创建的索引,如复合索引、前缀索引、唯一索引,都是属于非聚簇索引,在有的书籍中,又将其称为辅助索引(secondary index)。在后文中,我们称其为非聚簇索引,其数据结构为B+树。
那么,这个聚簇索引,在Mysql中是没有语句来另外生成的。在Innodb中,Mysql中的数据是按照主键的顺序来存放的。那么聚簇索引就是按照每张表的主键来构造一颗B+树,叶子节点存放的就是整张表的行数据。由于表里的数据只能按照一颗B+树排序,因此一张表只能有一个聚簇索引。
在Innodb中,聚簇索引默认就是主键索引。
这个时候,机智的读者,应该要问我
如果我的表没建主键呢?
回答是,如果没有主键,则按照下列规则来建聚簇索引
- 没有主键时,会用一个唯一且不为空的索引列做为主键,成为此表的聚簇索引
- 如果没有这样的索引,InnoDB会隐式定义一个主键来作为聚簇索引。
ps:大家还记得,自增主键和uuid作为主键的区别么?由于主键使用了聚簇索引,如果主键是自增id,,那么对应的数据一定也是相邻地存放在磁盘上的,写入性能比较高。如果是uuid的形式,频繁的插入会使innodb频繁地移动磁盘块,写入性能就比较低了。
索引原理介绍
先来一张带主键的表,如下所示,pId是主键
| pId | name | birthday |
|---|---|---|
| 5 | zhangsan | 2016-10-02 |
| 8 | lisi | 2015-10-04 |
| 11 | wangwu | 2016-09-02 |
| 13 | zhaoliu | 2015-10-07 |
画出该表的结构图如下
如上图所示,分为上下两个部分,上半部分是由主键形成的B+树,下半部分就是磁盘上真实的数据!那么,当我们, 执行下面的语句
select * from table where pId='11'
那么,执行过程如下
如上图所示,从根开始,经过3次查找,就可以找到真实数据。如果不使用索引,那就要在磁盘上,进行逐行扫描,直到找到数据位置。显然,使用索引速度会快。但是在写入数据的时候,需要维护这颗B+树的结构,因此写入性能会下降!
OK,接下来引入非聚簇索引!我们执行下面的语句
create index index_name on table(name);
此时结构图如下所示
大家注意看,会根据你的索引字段生成一颗新的B+树。因此, 我们每加一个索引,就会增加表的体积, 占用磁盘存储空间。然而,注意看叶子节点,非聚簇索引的叶子节点并不是真实数据,它的叶子节点依然是索引节点,存放的是该索引字段的值以及对应的主键索引(聚簇索引)。
如果我们执行下列语句
select * from table where name='lisi'
此时结构图如下所示
通过上图红线可以看出,先从非聚簇索引树开始查找,然后找到聚簇索引后。根据聚簇索引,在聚簇索引的B+树上,找到完整的数据!
那
什么情况不去聚簇索引树上查询呢?
还记得我们的非聚簇索引树上存着该索引字段的值么。如果,此时我们执行下面的语句
select name from table where name='lisi'
此时结构图如下
如上图红线所示,如果在非聚簇索引树上找到了想要的值,就不会去聚簇索引树上查询。还记得,博主在《select的正确姿势》提到的索引问题么:
当执行select col from table where col = ?,col上有索引的时候,效率比执行select * from table where col = ? 速度快好几倍!
看完上面的图,你应该对这句话有更深层的理解了。
那么这个时候,我们执行了下述语句,又会发生什么呢?
create index index_birthday on table(birthday);
此时结构图如下
看到了么,多加一个索引,就会多生成一颗非聚簇索引树。因此,很多文章才说,索引不能乱加。因为,有几个索引,就有几颗非聚簇索引树!你在做插入操作的时候,需要同时维护这几颗树的变化!因此,如果索引太多,插入性能就会下降!
MySQL(Innodb)索引的原理的更多相关文章
- 【原创】MySQL(Innodb)索引的原理
引言 回想四年前,我在学习mysql的索引这块的时候,老师在讲索引的时候,是像下面这么说的 索引就像一本书的目录.而当用户通过索引查找数据时,就好比用户通过目录查询某章节的某个知识点.这样就帮助用户有 ...
- MySQL InnoDB 索引 (INDEX) 页结构
MySQL InnoDB 索引 (INDEX) 页结构 InnoDB 为了不同的目的而设计了不同类型的页,我们把用于存放记录的页叫做索引页 索引页内容 索引页分为以下部分: File Header:表 ...
- 为什么mysql innodb索引是B+树数据结构
1.文件很大,不可能全部存储在内存中,所以要存在磁盘上 2.索引的组织结构要尽量减少查找过程中磁盘I/O的存取次数(为什么用B-/+Tree,还跟磁盘存取原理有关) 3.B+树所有的data域在叶子节 ...
- MySQL的索引实现原理
MySQL数据库索引总结使用索引的原由数据结构Hash.平衡二叉树.B树.B+树区别机械硬盘.固态硬盘区别Myisam与Innodb B+树的区别MySQL中的索引什么数据结构B+树中的节点到底存放多 ...
- MySQL InnoDB索引介绍以及在线添加索引实例分析
引言:MySQL之所以能成为经典,不是没有道理的,B+树足矣! 一.索引概念 InnoDB引擎支持三种常见的索引:B+树索引,全文索引和(自适应)哈希索引.B+树索引是传统意义上的索引,构造类似二叉树 ...
- mysql InnoDB 索引小记
0.索引结构 1).MyISAM与InnoDB索引结构比较,如下: 2).MyISAM的索引结构 主键索引和二级索引结构很像,叶子存储的都是索引以及数据存储的物理地址,其他节点存储的仅仅是索引信息.其 ...
- MySQL InnoDB 索引组织表 & 主键作用
InnoDB 索引组织表 一.索引组织表定义 在InnoDB存储引擎中,表都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT). 在Inno ...
- 高性能MySQL之索引深入原理分析
一.背景 我们工作中经常打交道的就是索引,那么到底什么是索引呢?例如,当一个SQL查询比较慢的时候,你可能会说给“某个字段加个索引吧”之类的解决方案. 总的来说索引的出现其实就是为了提高数据查询的效率 ...
- MySQL-索引工作原理及使用注意事项
1.为什么需要索引(Why is it needed)? 当数据保存在磁盘类存储介质上时,它是作为数据块存放.这些数据块是被当作一个整体来访问的,这样可以保证操作的原子性.硬盘数据块存储结构类似于链表 ...
随机推荐
- 1119.(重、错)Pre- and Post-order Traversals
题目大意: 给定一棵树的结点个数n,以及它的前序遍历和后序遍历,输出它的中序遍历: 如果中序遍历不唯一就输出No,且输出其中一个中序即可,如果中序遍历唯一就输出Yes,并输出它的中序 思路:(转载) ...
- 智行火车票免费加速到VIP最高速抢票(不用朋友积攒或者购买加速包)
更新: 2018.11.07, 昨天我买火车票,已经不行了,这个bug已经没有了,被修复了, 望大家知悉!!! 智行火车票免费加速到VIP最高速抢票(不用朋友积攒或者购买加速包) 1)下过单后选择抢到 ...
- 阿里云ECS安装的redis服务器,用java代码去连接报错。
import redis.clients.jedis.Jedis; /** * Hello world! * */ public class App { public static void main ...
- [UE4]C++中SpawnActor用法(动态创建Actor)
转自:http://aigo.iteye.com/blog/2270177 C++中创建一个Level并添加的Runtime当中 C++中Spawn一个基于蓝图的Actor https://answe ...
- WordPress整站轻松开启HTTPS
近两年来HTTPS取代HTTP已经成为大势所趋.早在2014年google Chromium安全团队提议将所有的HTTP协议网站标注为不安全.现在,Chrome浏览器已经开始执行这一标准了.从 Chr ...
- 递归锁,event事件和信号量
锁通常被用来实现对共享资源的同步访问.为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁,则当前线程需等待其被释放),待资源访问 ...
- Distributed traceability with Spring Cloud: Sleuth and Zipkin
I. Sleuth 0. Concept Trace A set of spans that form a call tree structure, forms the trace of the re ...
- Everything You Always Wanted to Know About SDRAM (Memory): But Were Afraid to Ask
It’s coming up on a year since we published our last memory review; possibly the longest hiatus this ...
- c#linq去除重复项并将相同数据的数量字段值相加
这是执行前和执行后想要的效果 以下是用Sql语句实现的代码: select goodsno, goodsspec,SUM([count]) as count from goods group by g ...
- 安装部署elasticsearch
ELK下载:https://www.elastic.co/downloads/ Beats:负责收集系统数据,可以直接发送到es中,也可以通过logstash中转 logstash:收集日志,为bea ...