P3232 [HNOI2013]游走 解题报告
P3232 [HNOI2013]游走
题目描述
一个无向连通图,顶点从\(1\)编号到\(N\),边从\(1\)编号到\(M\)。 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达\(N\)号顶点时游走结束,总分为所有获得的分数之和。 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。
输入输出格式
输入格式:
第一行是正整数\(N\)和\(M\),分别表示该图的顶点数和边数,接下来\(M\)行每行是整数\(u,v(1\le u,v\le N)\),表示顶点\(u\)与顶点\(v\)之间存在一条边。
输入保证\(30\%\)的数据满足\(N\le 10\),\(100\%\)的数据满足\(2\le N\le 500\)且是一个无向简单连通图。
输出格式:
仅包含一个实数,表示最小的期望值,保留3位小数。
\(f_i\)代表\(i\)这个点的期望经过次数,\(d_i\)表示度数
\]
1号点的方程常数加1,代表它原来就有1的次数,n号点不被转移走
然后求每条边的期望经过次数
\]
然后对边的期望次数排序,贪心匹配即可。
Code:
#include <cstdio>
#include <algorithm>
#include <cmath>
const int N=520;
int head[N],to[N*N],Next[N*N],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int n,m,eu[N*N],ev[N*N],in[N];
double a[N][N],ct[N*N];
void Gauss()
{
for(int i=1;i<=n;i++)
{
int id=i;
for(int j=i+1;j<=n;j++)
if(fabs(a[j][i])>fabs(a[id][i])) id=j;
std::swap(a[id],a[i]);
for(int j=n+1;j>=i;j--) a[i][j]/=a[i][i];
for(int j=i+1;j<=n;j++)
for(int k=n+1;k>=i;k--)
a[j][k]-=a[i][k]*a[j][i];
}
for(int i=n;i;i--)
for(int j=i-1;j;j--)
a[j][n+1]-=a[i][n+1]*a[j][i];
}
int main()
{
scanf("%d%d",&n,&m);
for(int u,v,i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
++in[u],++in[v];
eu[i]=u,ev[i]=v;
}
a[1][n+1]=1;
for(int u=1;u<=n;u++)
{
a[u][u]=1;
for(int i=head[u];i;i=Next[i])
if(to[i]!=n)
a[u][to[i]]=-1.0/in[to[i]];
}
Gauss();
for(int i=1;i<=m;i++)
{
if(eu[i]!=n) ct[i]=a[eu[i]][n+1]/in[eu[i]];
if(ev[i]!=n) ct[i]+=a[ev[i]][n+1]/in[ev[i]];
}
std::sort(ct+1,ct+1+m);
double ans=0;
for(int i=1;i<=m;i++)
ans+=ct[i]*(m+1-i);
printf("%.3f\n",ans);
return 0;
}
2019.1.12
P3232 [HNOI2013]游走 解题报告的更多相关文章
- 题解 P3232 [HNOI2013]游走
洛谷P3232[NOI2013]游走 题目描述 给定一个 n 个点 m 条边的无向连通图,顶点从 1 编号到 n,边从 1 编号到 m. 小 Z 在该图上进行随机游走,初始时小 Z 在 1 号顶点,每 ...
- P3232 [HNOI2013]游走——无向连通图&&高斯消元
题意 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...
- 洛谷P3232[HNOI2013]游走
有一个无向简单连通图,顶点从 \(1\) 编号到 \(n\),边从 \(1\) 编号到 \(m\) 小Z在该图上进行随机游走,初始时小Z在\(1\)号顶点,每一步小Z以相等的概率随机选 择当前顶点的某 ...
- [bzoj3143] [洛谷P3232] [HNOI2013] 游走
Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...
- P3232 [HNOI2013]游走
吐槽 傻了傻了,对着题解改了好长时间最后发现是自己忘了调用高斯消元了... 思路 期望题,分配编号,显然编号大的分给贡献次数小的,所以需要知道每个边被经过次数的期望 然后边被经过的次数的期望就是连接的 ...
- BZOJ 3143 Luogu P3232 [HNOI2013]游走 (DP、高斯消元)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3143 (luogu) https://www.luogu.org/pro ...
- 洛谷 P3232 [HNOI2013]游走
链接: P3232 题意: 和上次考试 T4 的简化且无修改一样,经典图上高斯消元求期望. 分析: 要求出每个点的期望出发次数 \(f_i\),每个点度数为 \(d_i\),有 \[f1=\sum\d ...
- 洛谷P3232 [HNOI2013]游走(高斯消元+期望)
传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...
- [补档][Hnoi2013]游走
[Hnoi2013]游走 题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一 ...
随机推荐
- 【webstorm】project目录树显示不出
问题原因:webstorm自动生成的配置文件 .idea/modules.xml损坏. 解决: 1.关掉webstorm: 2.删除该项目下的.idea文件夹(如果隐藏,请设置显示隐藏文件夹): 3. ...
- c# C#获取屏幕鼠标坐标点颜色
[DllImport("user32.dll")] private static extern IntPtr GetDC(IntPtr hwnd); [DllImport(&quo ...
- 基于TLS证书手动部署kubernetes集群(上)
一.简介 Kubernetes是Google在2014年6月开源的一个容器集群管理系统,使用Go语言开发,Kubernetes也叫K8S. K8S是Google内部一个叫Borg的容器集群管理系统衍生 ...
- VS新建一个模板工程
新建一个模板工程的好处: 1.就不用每次都走一边新建向导了,新建工程一步到位. 2.可以往项目中每次都的输入的代码,如一些声明注释-- 效果图: 具体步骤: 1.自己先新建一个属于自己的工程. ...
- EJB开发第一期---EJB开发配置
一.EJB 3.0简介 1.1 什么是EJB Enterprise JavaBeans是一个用于分布式业务应用的标准服务端组件模型.采用Enterprise JavaBeans架构编写的应用是可伸缩的 ...
- Eclipse中Maven插件配置
1. Maven插件配置 http://www.blogjava.net/fancydeepin/archive/2012/07/13/eclipse_maven3_plugin.html 2. Ma ...
- QTableWidget 详细使用
QTableWidget 详细使用
- js之浅拷贝与深拷贝
浅拷贝:只会复制对象的第一层数据 深拷贝:不仅仅会复制第一层的数据,如果里面还有对象,会继续进行复制,直到复制到全是基本数据类型为止 简单来说,浅拷贝是都指向同一块内存区块,而深拷贝则是另外开辟了一块 ...
- Android 模拟输入那点事
因工作原因,需要用到模拟输入这个东东,查阅了一些资料,实现方式有多种,我大概分为两类,命令行类和程序类. 命令行类包括自动化测试组件monkeyrunner,getevent/setevent命令,i ...
- stl源码剖析 详细学习笔记 set map
// // set map.cpp // 笔记 // // Created by fam on 15/3/23. // // //---------------------------15/03 ...