P3232 [HNOI2013]游走

题目描述

一个无向连通图,顶点从\(1\)编号到\(N\),边从\(1\)编号到\(M\)。 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达\(N\)号顶点时游走结束,总分为所有获得的分数之和。 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

输入输出格式

输入格式:

第一行是正整数\(N\)和\(M\),分别表示该图的顶点数和边数,接下来\(M\)行每行是整数\(u,v(1\le u,v\le N)\),表示顶点\(u\)与顶点\(v\)之间存在一条边。

输入保证\(30\%\)的数据满足\(N\le 10\),\(100\%\)的数据满足\(2\le N\le 500\)且是一个无向简单连通图。

输出格式:

仅包含一个实数,表示最小的期望值,保留3位小数。


\(f_i\)代表\(i\)这个点的期望经过次数,\(d_i\)表示度数

\[f_v=\sum \frac{f_u}{d_u}
\]

1号点的方程常数加1,代表它原来就有1的次数,n号点不被转移走

然后求每条边的期望经过次数

\[E_{u,v}=\frac{f_u}{d_u}+\frac{f_v}{d_v}
\]

然后对边的期望次数排序,贪心匹配即可。


Code:

#include <cstdio>
#include <algorithm>
#include <cmath>
const int N=520;
int head[N],to[N*N],Next[N*N],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int n,m,eu[N*N],ev[N*N],in[N];
double a[N][N],ct[N*N];
void Gauss()
{
for(int i=1;i<=n;i++)
{
int id=i;
for(int j=i+1;j<=n;j++)
if(fabs(a[j][i])>fabs(a[id][i])) id=j;
std::swap(a[id],a[i]);
for(int j=n+1;j>=i;j--) a[i][j]/=a[i][i];
for(int j=i+1;j<=n;j++)
for(int k=n+1;k>=i;k--)
a[j][k]-=a[i][k]*a[j][i];
}
for(int i=n;i;i--)
for(int j=i-1;j;j--)
a[j][n+1]-=a[i][n+1]*a[j][i];
}
int main()
{
scanf("%d%d",&n,&m);
for(int u,v,i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
add(u,v),add(v,u);
++in[u],++in[v];
eu[i]=u,ev[i]=v;
}
a[1][n+1]=1;
for(int u=1;u<=n;u++)
{
a[u][u]=1;
for(int i=head[u];i;i=Next[i])
if(to[i]!=n)
a[u][to[i]]=-1.0/in[to[i]];
}
Gauss();
for(int i=1;i<=m;i++)
{
if(eu[i]!=n) ct[i]=a[eu[i]][n+1]/in[eu[i]];
if(ev[i]!=n) ct[i]+=a[ev[i]][n+1]/in[ev[i]];
}
std::sort(ct+1,ct+1+m);
double ans=0;
for(int i=1;i<=m;i++)
ans+=ct[i]*(m+1-i);
printf("%.3f\n",ans);
return 0;
}

2019.1.12

P3232 [HNOI2013]游走 解题报告的更多相关文章

  1. 题解 P3232 [HNOI2013]游走

    洛谷P3232[NOI2013]游走 题目描述 给定一个 n 个点 m 条边的无向连通图,顶点从 1 编号到 n,边从 1 编号到 m. 小 Z 在该图上进行随机游走,初始时小 Z 在 1 号顶点,每 ...

  2. P3232 [HNOI2013]游走——无向连通图&&高斯消元

    题意 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编 ...

  3. 洛谷P3232[HNOI2013]游走

    有一个无向简单连通图,顶点从 \(1\) 编号到 \(n\),边从 \(1\) 编号到 \(m\) 小Z在该图上进行随机游走,初始时小Z在\(1\)号顶点,每一步小Z以相等的概率随机选 择当前顶点的某 ...

  4. [bzoj3143] [洛谷P3232] [HNOI2013] 游走

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点, ...

  5. P3232 [HNOI2013]游走

    吐槽 傻了傻了,对着题解改了好长时间最后发现是自己忘了调用高斯消元了... 思路 期望题,分配编号,显然编号大的分给贡献次数小的,所以需要知道每个边被经过次数的期望 然后边被经过的次数的期望就是连接的 ...

  6. BZOJ 3143 Luogu P3232 [HNOI2013]游走 (DP、高斯消元)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3143 (luogu) https://www.luogu.org/pro ...

  7. 洛谷 P3232 [HNOI2013]游走

    链接: P3232 题意: 和上次考试 T4 的简化且无修改一样,经典图上高斯消元求期望. 分析: 要求出每个点的期望出发次数 \(f_i\),每个点度数为 \(d_i\),有 \[f1=\sum\d ...

  8. 洛谷P3232 [HNOI2013]游走(高斯消元+期望)

    传送门 所以说我讨厌数学……期望不会高斯消元也不会……好不容易抄好了高斯消元板子被精度卡成琪露诺了…… 首先,我们先算出走每一条边的期望次数,那么为了最小化期望,就让大的期望次数乘上小编号 边的期望次 ...

  9. [补档][Hnoi2013]游走

    [Hnoi2013]游走 题目 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一 ...

随机推荐

  1. 20155317王新玮《网络对抗》Exp2 后门原理与实践

    20155317王新玮<网络对抗>Exp2 后门原理与实践 一.实验内容 (1)使用netcat获取主机操作Shell,cron启动 (2)使用socat获取主机操作Shell, 任务计划 ...

  2. pandas 索引与列相互转化

    1. 准备数据 import pandas as pd from io import StringIO csv_txt = '''"date","player1" ...

  3. 在 JS 对象中使用 . 和 [] 操作属性的区别

    在 JS 对象中,调用属性一般有两种方法--点和中括号的方法. 例如 使用点方法 var obj = { name: "cedric" } console.log(obj.name ...

  4. [CF1019C]Sergey's problem[构造]

    题意 找出一个集合 \(Q\),使得其中的点两两之间没有连边,且集合中的点可以走不超过两步到达其他所有不在集合中的点.输出任意一组解. \(n\leq 10^6\) 分析 考虑构造,先从 \(1\) ...

  5. Html_div圆角

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. Tortoisegit生成SSH密钥一次性输入密码

    一.找到Tortoisegit 的安装目录,进入bin目录下,找到puttygen.exe并打开,点击Generate按钮,会看到上面出现绿色滚动条,此时要不停移动鼠标,进度会比较快,完成后,就会看到 ...

  7. 通过监控Nginx日志来实时屏蔽高频恶意访问的IP

    目前在我的VPS上主要通过两种方式来限制ip的访问次数. 通过Nginx的limit_req配置来限制同一ip在一分钟内的访问次数 通过Nginx deny封禁一天内超过指定次数的ip(需要一个监控脚 ...

  8. 学会清理.rncache 文件、清理已经安装的三方文件,三方引入文件

    1.来到指定文件夹.rncache路径,不会的可以百度,然后手动删除. 2.更新RN引入的文件的版本号,要记得将yarn.lock (.lock文件删掉) 3.我用 npm install 之后,然后 ...

  9. PAT甲题题解-1120. Friend Numbers (20)-水题

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789775.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  10. ajax请求超时判断(转载)

    ajax请求时有个参数可以借鉴一下 var ajaxTimeOut = $.ajax({ url:'', //请求的URL timeout : 1000, //超时时间设置,单位毫秒 type : ' ...