Description

设T 为一棵有根树,我们做如下的定义:

? 设a和b为T 中的两个不同节点。如果a是b的祖先,那么称“a比b不知道

高明到哪里去了”。

? 设a 和 b 为 T 中的两个不同节点。如果 a 与 b 在树上的距离不超过某个给定

常数x,那么称“a 与b 谈笑风生”。

给定一棵n个节点的有根树T,节点的编号为1 到 n,根节点为1号节点。你需

要回答q 个询问,询问给定两个整数p和k,问有多少个有序三元组(a;b;c)满足:

  1. a、b和 c为 T 中三个不同的点,且 a为p 号节点;

  2. a和b 都比 c不知道高明到哪里去了;

  3. a和b 谈笑风生。这里谈笑风生中的常数为给定的 k。

Input

第一行含有两个正整数n和q,分别代表有根树的点数与询问的个数。

接下来n - 1行,每行描述一条树上的边。每行含有两个整数u和v,代表在节点u和v之间有一条边。

接下来q行,每行描述一个操作。第i行含有两个整数,分别表示第i个询问的p和k。

1<=P<=N

1<=K<=N

N<=300000

Q<=300000

Output

输出 q 行,每行对应一个询问,代表询问的答案。

Sample Input

5 3

1 2

1 3

2 4

4 5

2 2

4 1

2 3

Sample Output

3

1

3

HINT

Hint:边要加双向

Solution

显然存在两种情况:

  1. \(a\) 在 \(b\) 下面,这样就是 \(a\) 的除去自己的子树大小乘上 \(k\) 和 \(a\) 深度的值小者。这个很显然嘛。
  2. \(a\) 在 \(b\) 上面,这种情况,设计dp,\(f[i][j]\) 代表第 \(i\) 个点,其往下距离 \(i\) 长度 \(j\) 的点的除自己之外的子树大小和。那么答案就是 \(\sum_{i=1}^kf[p][i]\) 。发现这个dp与深度有关,所以长链剖分优化。然后因为还要求一个前缀和,所以要在dp时处理好。因为这个长链剖分dp只有加没有删,所以可以维护后缀和,答案差分算就好了。

综合上面两种情况,先把所有的询问挂在点上,然后dp统计答案

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
#define REP(a,b,c) for(register int a=(b),a##end=(c);a<=a##end;++a)
#define DEP(a,b,c) for(register int a=(b),a##end=(c);a>=a##end;--a)
const int MAXN=300000+10;
int n,q,e,beg[MAXN],nex[MAXN<<1],to[MAXN<<1],dep[MAXN],size[MAXN],hson[MAXN],Mxdep[MAXN],top[MAXN],cnt,id[MAXN];
ll ans[MAXN];
std::deque<ll> f[MAXN];
std::vector< std::pair<int,int> > V[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void dfs1(int x,int p)
{
dep[x]=dep[p]+1;Mxdep[x]=dep[x];hson[x]=x;
for(register int i=beg[x];i;i=nex[i])
if(to[i]==p)continue;
else
{
dfs1(to[i],x);
if(Mxdep[to[i]]>Mxdep[x])hson[x]=to[i],Mxdep[x]=Mxdep[to[i]];
}
}
inline void dfs2(int x,int p,int tp)
{
top[x]=tp;
if(hson[x]!=x)dfs2(hson[x],x,tp);
for(register int i=beg[x];i;i=nex[i])
if(to[i]==p||to[i]==hson[x])continue;
else dfs2(to[i],x,to[i]);
}
#define ft first
#define sd second
inline void dfs(int x,int p)
{
if(hson[x]==x)
{
id[x]=++cnt;
f[id[x]].resize(dep[x]-dep[top[x]]);
return ;
}
dfs(hson[x],x);
id[x]=id[hson[x]];size[x]+=size[hson[x]]+1;
ll now=size[hson[x]];
f[id[x]].push_front(0);
for(register int i=beg[x];i;i=nex[i])
if(to[i]==p||to[i]==hson[x])continue;
else
{
dfs(to[i],x);
now+=size[to[i]];size[x]+=size[to[i]]+1;
REP(j,1,Mxdep[to[i]]-dep[to[i]])f[id[x]][j]+=f[id[to[i]]][j-1];
}
f[id[x]][0]=f[id[x]][1]+now;
REP(i,0,V[x].size()-1)
{
std::pair<int,int> pr=V[x][i];
int ps=min(Mxdep[x]-dep[x],pr.sd-1);
ans[pr.ft]=1ll*min(dep[x]-1,pr.sd)*size[x]+f[id[x]][0]-f[id[x]][ps+1];
}
}
#undef ft
#undef sd
int main()
{
read(n);read(q);
REP(i,1,n-1)
{
int u,v;read(u);read(v);
insert(u,v);insert(v,u);
}
REP(i,1,q)
{
int p,k;read(p);read(k);
V[p].push_back(std::make_pair(i,k));
}
dfs1(1,0);dfs2(1,0,1);dfs(1,0);
REP(i,1,q)printf("%lld\n",ans[i]);
return 0;
}

【刷题】BZOJ 3653 谈笑风生的更多相关文章

  1. 主席树 || 可持久化线段树 || BZOJ 3653: 谈笑风生 || Luogu P3899 [湖南集训]谈笑风生

    题面:P3899 [湖南集训]谈笑风生 题解: 我很喜欢这道题. 因为A是给定的,所以实质是求二元组的个数.我们以A(即给定的P)作为基点寻找答案,那么情况分两类.一种是B为A的父亲,另一种是A为B的 ...

  2. BZOJ 3653: 谈笑风生(离线, 长链剖分, 后缀和)

    题意 给你一颗有 \(n\) 个点并且以 \(1\) 为根的树.共有 \(q\) 次询问,每次询问两个参数 \(p, k\) .询问有多少对点 \((p, a, b)\) 满足 \(p,a,b\) 为 ...

  3. BZOJ.3653.谈笑风生(长链剖分/线段树合并/树状数组)

    BZOJ 洛谷 \(Description\) 给定一棵树,每次询问给定\(p,k\),求满足\(p,a\)都是\(b\)的祖先,且\(p,a\)距离不超过\(k\)的三元组\(p,a,b\)个数. ...

  4. bzoj 3653 谈笑风生——主席树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3653 原来一直想怎么线段树合并.可是不会把角标挪一位. 查询的其实是子树内一段深度的点的 s ...

  5. bzoj 3653 谈笑风生 —— 主席树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3653 对于一个 (a,b,c),分成 b 是 a 的祖先和 b 在 a 子树里两部分: 第一 ...

  6. BZOJ 3653 谈笑风生

    ORZ blutrex...... 主席树. #include<iostream> #include<cstdio> #include<cstring> #incl ...

  7. BZOJ 3653: 谈笑风生(DFS序+可持久化线段树)

    首先嘛,还是太弱了,想了好久QAQ 然后,这道题么,明显就是求sigma(size[x]) (x是y的儿子且层树小于k) 然后就可以发现:把前n个节点按深度建可持久化线段树,就能用前缀和维护了 其实不 ...

  8. bzoj 3653: 谈笑风生 可持久化线段树

    题目大意 在一棵单位边权的有根树上支持询问: 给定a,k求满足下列条件的有序三元对的个数. a,b,c互不相同 a,b均为c的祖先 a,b树上距离<=k 题解 solution 1 首先我们知道 ...

  9. bzoj 3653: 谈笑风生【dfs序+主席树】

    考虑b的两种情况,一种是p的祖先,这种点有min(k,de[p]-1)个,然后每个这种b都有si[p]-1个c点可选: 另一种是p的子孙,要求是在p的子树内且deep在de[p]+1~de[p]+k之 ...

随机推荐

  1. AbelSu玩Kotlin

    Kotlin是一门基于JVM的编程语言,它正成长为Android开发中用于替代Java语言的继承者. Kotlin是由JetBrains创建的基于JVM的编程语言,IntelliJ正是JetBrain ...

  2. odoo之自动生成编号问题

    单独的seq.xml文件 <?xml version="1.0" encoding="utf-8"?><openerp> <dat ...

  3. 基于Azure的软件部署和开发系列沙龙

    活动简介: Azure是一种灵活和支持互操作的平台,它可以被用来创建云中运行的应用或者通过基于云的特性来加强现有应用.它开放式的架构给开发者提供了Web应用.互联设备的应用.个人电脑.服务器.或者提供 ...

  4. 大数据入门第二十三天——SparkSQL(二)结合hive

    一.SparkSQL结合hive 1.首先通过官网查看与hive匹配的版本 这里可以看到是1.2.1 2.与hive结合 spark可以通过读取hive的元数据来兼容hive,读取hive的表数据,然 ...

  5. Django Rest Framework源码剖析(二)-----权限

    一.简介 在上一篇博客中已经介绍了django rest framework 对于认证的源码流程,以及实现过程,当用户经过认证之后下一步就是涉及到权限的问题.比如订单的业务只能VIP才能查看,所以这时 ...

  6. 如何取得Oracle并行执行的trace

    如何取得Oracle并行执行的trace: ALTER SESSION SET tracefile_identifier='10046_PROD';ALTER SESSION SET max_dump ...

  7. mapreduce 多种输入

    1.多路径输入 1)FileInputFormat.addInputPath 多次调用加载不同路径 FileInputFormat.addInputPath(job, new Path("h ...

  8. python 生成器按指定大小读取文件

    #!/usr/bin/env python import osimport sys def read_file(fpath): Block_Size = 1024 with open(fpath,&q ...

  9. [LOJ#6198]谢特[后缀数组+trie+并查集]

    题意 给你一个长度为 \(n\) 的字符串,问 \(LCP(i,j)+(w_i\ xor\ w_j)\) 的最大值,其中 \(LCP\) 表示两个后缀的最长公共前缀. \(n\le 10^5\) 分析 ...

  10. [Latex] 所有字体embedded: Type3 PDF文档处理 / True Type转换为Type 1

    目录: [正文] Adobe Acrobat打印解决字体嵌入问题 [Appendix I] Type3转TRUE Type/Type 1 [Appendix II] TRUE Type转Type 1 ...