Get Luffy Out *

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 978    Accepted Submission(s): 426

Problem Description

Ratish is a young man who always dreams of being a hero. One day his friend Luffy was caught by Pirate Arlong. Ratish set off at once to Arlong's island. When he got there, he found the secret place where his friend was kept, but he could not go straight in. He saw a large door in front of him and two locks in the door. Beside the large door, he found a strange rock, on which there were some odd words. The sentences were encrypted. But that was easy for Ratish, an amateur cryptographer. After decrypting all the sentences, Ratish knew the following facts:

Behind the large door, there is a nesting prison, which consists of M floors. Each floor except the deepest one has a door leading to the next floor, and there are two locks in each of these doors. Ratish can pass through a door if he opens either of the two locks in it. There are 2N different types of locks in all. The same type of locks may appear in different doors, and a door may have two locks of the same type. There is only one key that can unlock one type of lock, so there are 2N keys for all the 2N types of locks. These 2N keys were made N pairs,one key may be appear in some pairs, and once one key in a pair is used, the other key will disappear and never show up again.

Later, Ratish found N pairs of keys under the rock and a piece of paper recording exactly what kinds of locks are in the M doors. But Ratish doesn't know which floor Luffy is held, so he has to open as many doors as possible. Can you help him to choose N keys to open the maximum number of doors?

 

Input

There are several test cases. Every test case starts with a line containing two positive integers N (1 <= N <= 2^10) and M (1 <= M <= 2^11) separated by a space, the first integer represents the number of types of keys and the second integer represents the number of doors. The 2N keys are numbered 0, 1, 2, ..., 2N - 1. Each of the following N lines contains two integers, which are the numbers of two keys in a pair. After that, each of the following M lines contains two integers, which are the numbers of two keys corresponding to the two locks in a door. You should note that the doors are given in the same order that Ratish will meet. A test case with N = M = 0 ends the input, and should not be processed.
 

Output

For each test case, output one line containing an integer, which is the maximum number of doors Ratish can open.
 

Sample Input

3 6
0 3
1 2
4 5
0 1
0 2
4 1
4 2
3 5
2 2
0 0
 

Sample Output

4

Hint

题目有更改!

 

Source

 
二分能够到达的层数。
首先每队钥匙之间建边。
然后前deep层的锁建边。
2-SAT判定是否可行。
 //2017-08-28
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath> using namespace std; const int N = ;
const int M = N*N*;
int head[N], rhead[N], tot, rtot;
struct Edge{
int to, next;
}edge[M], redge[M]; void init(){
tot = ;
rtot = ;
memset(head, -, sizeof(head));
memset(rhead, -, sizeof(rhead));
} void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++; redge[rtot].to = u;
redge[rtot].next = rhead[v];
rhead[v] = rtot++;
} vector<int> vs;//后序遍历顺序的顶点列表
bool vis[N];
int cmp[N];//所属强连通分量的拓扑序 //input: u 顶点
//output: vs 后序遍历顺序的顶点列表
void dfs(int u){
vis[u] = true;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!vis[v])
dfs(v);
}
vs.push_back(u);
} //input: u 顶点编号; k 拓扑序号
//output: cmp[] 强连通分量拓扑序
void rdfs(int u, int k){
vis[u] = true;
cmp[u] = k;
for(int i = rhead[u]; i != -; i = redge[i].next){
int v = redge[i].to;
if(!vis[v])
rdfs(v, k);
}
} //Strongly Connected Component 强连通分量
//input: n 顶点个数
//output: k 强连通分量数;
int scc(int n){
memset(vis, , sizeof(vis));
vs.clear();
for(int u = ; u < n; u++)
if(!vis[u])
dfs(u);
int k = ;
memset(vis, , sizeof(vis));
for(int i = vs.size()-; i >= ; i--)
if(!vis[vs[i]])
rdfs(vs[i], k++);
return k;
} int n, m;
pair<int, int> key[N], lock[N]; //二分层数
bool check(int deep){
init();
for(int i = ; i < n; i++){
//add_edge(key[i].first, key[i].second+2*n);
add_edge(key[i].second+*n, key[i].first);// NOT v -> u
//add_edge(key[i].second, key[i].first+2*n);
add_edge(key[i].first+*n, key[i].second);// NOT u -> v
}
for(int i = ; i < deep; i++){
add_edge(lock[i].first, lock[i].second+*n);// u -> NOT v
//add_edge(lock[i].second+2*n, lock[i].first);
add_edge(lock[i].second, lock[i].first+*n);// v -> NOT u
//add_edge(lock[i].first+2*n, lock[i].second);
}
scc(*n);
for(int i = ; i < *n; i++){
if(cmp[i] == cmp[i+*n])
return false;
}
return true;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputF.txt", "r", stdin);
while(cin>>n>>m){
if(!n && !m)break;
for(int i = ; i < n; i++)
cin>>key[i].first>>key[i].second;
for(int i = ; i < m; i++)
cin>>lock[i].first>>lock[i].second;
int l = , r = m, mid, ans = ;
while(l <= r){
mid = (l+r)/;
if(check(mid)){
ans = mid;
l = mid+;
}else
r = mid-;
}
cout<<ans<<endl;
}
return ;
}

HDU1816(二分+2-SAT)的更多相关文章

  1. hdu1816 + POJ 2723开锁(二分+2sat)

    题意:      有m层门,我们在最外层,我们要一层一层的进,每一层上有两把锁,我们只要开启其中的一把们就会开,我们有n组钥匙,每组两把,我们只能用其中的一把,用完后第二把瞬间就会消失,问你最多能开到 ...

  2. 证明与计算(3): 二分决策图(Binary Decision Diagram, BDD)

    0x01 布尔代数(Boolean algebra) 大名鼎鼎鼎的stephen wolfram在2015年的时候写了一篇介绍George Boole的文章:George Boole: A 200-Y ...

  3. Map Labeler POJ - 2296(2 - sat 具体关系建边)

    题意: 给出n个点  让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...

  4. LA 3211 飞机调度(2—SAT)

    https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...

  5. UVALive - 3211 (2-SAT + 二分)

    layout: post title: 训练指南 UVALive - 3211 (2-SAT + 二分) author: "luowentaoaa" catalog: true m ...

  6. hdu3715 2-sat+二分

    Go Deeper 题意:确定一个0/1数组(size:n)使得满足最多的条件数.条件在数组a,b,c给出. 吐槽:哎,一水提,还搞了很久!关键是抽象出题目模型(如上的一句话).以后做二sat:有哪些 ...

  7. POJ 2749 2SAT判定+二分

    题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大 距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相 ...

  8. 2 - sat 模板(自用)

    2-sat一个变量两种状态符合条件的状态建边找强连通,两两成立1 - n 为第一状态(n + 1) - (n + n) 为第二状态 例题模板 链接一  POJ 3207 Ikki's Story IV ...

  9. BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]

    1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 8748  Solved: 3835[Submi ...

随机推荐

  1. Linux防火墙配置与管理(16)

    防火墙指的是一个由软件和硬件设备组合而成.在内部网和外部网之间.专用网与公共网之间的边界上构造的保护屏障.是一种获取安全性方法的形象说法,它是一种计算机硬件和软件的结合,使Internet与Intra ...

  2. UOJ#419. 【集训队作业2018】圆形(格林公式)

    题面 传送门 题解 首先您得会用格林公式计算圆的面积并 这里只需要动态维护一下圆弧就可以了 时间复杂度\(O(n^2\log n)\) //minamoto #include<bits/stdc ...

  3. PICE(2):JDBCStreaming - gRPC-JDBC Service

    在一个akka-cluster环境里,从数据调用的角度上,JDBC数据库与集群中其它节点是脱离的.这是因为JDBC数据库不是分布式的,不具备节点位置透明化特性.所以,JDBC数据库服务器必须通过服务方 ...

  4. SpringBoot入门之内嵌Tomcat配置

    spring boot默认web程序启用tomcat内嵌容器tomcat,监听8080端口,servletPath默认为 / .需要用到的就是端口.上下文路径的修改,在spring boot中其修改方 ...

  5. 使用pymysql

    安装 pip3 install pymysql 连接.执行sql.关闭(游标) import pymysql mysql_connect_dict={ 'host':'127.0.0.1', 'por ...

  6. POJ 2421

    #include<iostream> #include<stdio.h> #define MAXN 500 #define inf 100000000 using namesp ...

  7. canvars 画花

    index.html <!DOCTYPE html><html><head> <title>旋转的花</title> <meta ch ...

  8. 剑指offer十七姊妹篇之二叉树的创建、遍历、判断子二叉树

    1.二叉树节点类 public class TreeNode { int val = 0; TreeNode left = null; TreeNode right = null; public Tr ...

  9. mongo数据查询操作

    本文来源于 :Stephen Liu 1.  基本查询:     构造查询数据.    > db.test.findOne()    {         "_id" : Ob ...

  10. centos 7 安装 mysql 5.7

    1.环境 Centos 7 2.下载 官方网站https://dev.mysql.com/downloads/mysql/5.7.html#downloads ,选择要下载的版本,centos 7 同 ...