HDU1816(二分+2-SAT)
Get Luffy Out *
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 978 Accepted Submission(s): 426
Problem Description
Behind the large door, there is a nesting prison, which consists of M floors. Each floor except the deepest one has a door leading to the next floor, and there are two locks in each of these doors. Ratish can pass through a door if he opens either of the two locks in it. There are 2N different types of locks in all. The same type of locks may appear in different doors, and a door may have two locks of the same type. There is only one key that can unlock one type of lock, so there are 2N keys for all the 2N types of locks. These 2N keys were made N pairs,one key may be appear in some pairs, and once one key in a pair is used, the other key will disappear and never show up again.
Later, Ratish found N pairs of keys under the rock and a piece of paper recording exactly what kinds of locks are in the M doors. But Ratish doesn't know which floor Luffy is held, so he has to open as many doors as possible. Can you help him to choose N keys to open the maximum number of doors?
Input
Output
Sample Input
0 3
1 2
4 5
0 1
0 2
4 1
4 2
3 5
2 2
0 0
Sample Output
Hint
题目有更改!
Source
//2017-08-28
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <cmath> using namespace std; const int N = ;
const int M = N*N*;
int head[N], rhead[N], tot, rtot;
struct Edge{
int to, next;
}edge[M], redge[M]; void init(){
tot = ;
rtot = ;
memset(head, -, sizeof(head));
memset(rhead, -, sizeof(rhead));
} void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++; redge[rtot].to = u;
redge[rtot].next = rhead[v];
rhead[v] = rtot++;
} vector<int> vs;//后序遍历顺序的顶点列表
bool vis[N];
int cmp[N];//所属强连通分量的拓扑序 //input: u 顶点
//output: vs 后序遍历顺序的顶点列表
void dfs(int u){
vis[u] = true;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!vis[v])
dfs(v);
}
vs.push_back(u);
} //input: u 顶点编号; k 拓扑序号
//output: cmp[] 强连通分量拓扑序
void rdfs(int u, int k){
vis[u] = true;
cmp[u] = k;
for(int i = rhead[u]; i != -; i = redge[i].next){
int v = redge[i].to;
if(!vis[v])
rdfs(v, k);
}
} //Strongly Connected Component 强连通分量
//input: n 顶点个数
//output: k 强连通分量数;
int scc(int n){
memset(vis, , sizeof(vis));
vs.clear();
for(int u = ; u < n; u++)
if(!vis[u])
dfs(u);
int k = ;
memset(vis, , sizeof(vis));
for(int i = vs.size()-; i >= ; i--)
if(!vis[vs[i]])
rdfs(vs[i], k++);
return k;
} int n, m;
pair<int, int> key[N], lock[N]; //二分层数
bool check(int deep){
init();
for(int i = ; i < n; i++){
//add_edge(key[i].first, key[i].second+2*n);
add_edge(key[i].second+*n, key[i].first);// NOT v -> u
//add_edge(key[i].second, key[i].first+2*n);
add_edge(key[i].first+*n, key[i].second);// NOT u -> v
}
for(int i = ; i < deep; i++){
add_edge(lock[i].first, lock[i].second+*n);// u -> NOT v
//add_edge(lock[i].second+2*n, lock[i].first);
add_edge(lock[i].second, lock[i].first+*n);// v -> NOT u
//add_edge(lock[i].first+2*n, lock[i].second);
}
scc(*n);
for(int i = ; i < *n; i++){
if(cmp[i] == cmp[i+*n])
return false;
}
return true;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputF.txt", "r", stdin);
while(cin>>n>>m){
if(!n && !m)break;
for(int i = ; i < n; i++)
cin>>key[i].first>>key[i].second;
for(int i = ; i < m; i++)
cin>>lock[i].first>>lock[i].second;
int l = , r = m, mid, ans = ;
while(l <= r){
mid = (l+r)/;
if(check(mid)){
ans = mid;
l = mid+;
}else
r = mid-;
}
cout<<ans<<endl;
}
return ;
}
HDU1816(二分+2-SAT)的更多相关文章
- hdu1816 + POJ 2723开锁(二分+2sat)
题意: 有m层门,我们在最外层,我们要一层一层的进,每一层上有两把锁,我们只要开启其中的一把们就会开,我们有n组钥匙,每组两把,我们只能用其中的一把,用完后第二把瞬间就会消失,问你最多能开到 ...
- 证明与计算(3): 二分决策图(Binary Decision Diagram, BDD)
0x01 布尔代数(Boolean algebra) 大名鼎鼎鼎的stephen wolfram在2015年的时候写了一篇介绍George Boole的文章:George Boole: A 200-Y ...
- Map Labeler POJ - 2296(2 - sat 具体关系建边)
题意: 给出n个点 让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...
- LA 3211 飞机调度(2—SAT)
https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...
- UVALive - 3211 (2-SAT + 二分)
layout: post title: 训练指南 UVALive - 3211 (2-SAT + 二分) author: "luowentaoaa" catalog: true m ...
- hdu3715 2-sat+二分
Go Deeper 题意:确定一个0/1数组(size:n)使得满足最多的条件数.条件在数组a,b,c给出. 吐槽:哎,一水提,还搞了很久!关键是抽象出题目模型(如上的一句话).以后做二sat:有哪些 ...
- POJ 2749 2SAT判定+二分
题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大 距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相 ...
- 2 - sat 模板(自用)
2-sat一个变量两种状态符合条件的状态建边找强连通,两两成立1 - n 为第一状态(n + 1) - (n + n) 为第二状态 例题模板 链接一 POJ 3207 Ikki's Story IV ...
- BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 8748 Solved: 3835[Submi ...
随机推荐
- “全栈2019”Java多线程第三十五章:如何获取线程被等待的时间?
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ...
- 计算机中的K、M、G、T到底指的是
计算机语言是二进制数字01组成. 在计算机工作中,2的10次方用K(kilo)表示,2的20次方用M(mega)表示,2的30次方用G(giga)表示,2的40次方用T(tera)表示.因此,4K=2 ...
- C#6.0语言规范(十五) 委托
委托启用其他语言(如C ++,Pascal和Modula)已使用函数指针进行寻址的方案.但是,与C ++函数指针不同,委托是完全面向对象的,与成员函数的C ++指针不同,委托封装了对象实例和方法. 委 ...
- zabbix 监控安装
注意:此篇是在安装好lnmp环境后才能部署的操作,所以,做之前准备好lnmp环境,或者可以参考我做的lnmp环境,之后接着此篇开始安装 监控系统Zabbix-3.2.1的安装 zabbix-serve ...
- Eclipse连接MuMu模拟器 方便 测试 查日志
Eclipse连接MuMu模拟器 方便 测试 查日志 问题由来 真机测试麻烦(首先你得拿一部手机,然后在用数据线连接电脑和手机...) 解决流程 确保打开MuMu模拟器和Eclipse的DDMS功能 ...
- git merge 的过程及冲突处理演示
master分支上有一个1.txt文件,进行修改后提交 $ cat 1.txt 1 11 12 $ echo 13 >> 1.txt $ git commit -a -m "mo ...
- CentOS 部署 Python3 的一些注意事项
环境:centos6.7https://github.com/vinta/awesome-pythonhttps://github.com/PyMySQL/PyMySQLhttps://github. ...
- #ifdef、#ifndef、#else、#endif执行条件编译
我们开发的程序不只在pc端运行,也要在移动端运行.这时程序就要根据机器的环境来执行选择性的编译,如对PC端编译PC端的程序,对移动端编译移动端的程序,这里我们就可以用两组条件编译. ...
- 牛客网Java刷题知识点float数据在内存中是怎么存储的
不多说,直接上干货! float类型数字在计算机中用4个字节存储. 遵循IEEE-754格式标准: 一个浮点数有2部分组成:底数m和指数e (1)底数部分 使用二进制数来表示此浮点数的实际值 (2)指 ...
- 【原创】基于Bootstrap的Modal二次封装
前言 Bootstrap:Twitter推出的一个开源的用于前端开发的工具包.它由Twitter的设计师Mark Otto和Jacob Thornton合作开发,是一个CSS/HTML框架 官方网站: ...