PASCAL VOC数据集分析
PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge。
本文主要分析PASCAL VOC数据集中和图像中物体识别相关的内容。
 
在这里采用PASCAL VOC2012作为例子。下载地址为:点击打开链接。(本文中的系统环境为ubuntu14.04)
下载完之后解压,可以在VOCdevkit目录下的VOC2012中看到如下的文件:
其中在图像物体识别上着重需要了解的是Annotations、ImageSets和JPEGImages。
①JPEGImages
 
JPEGImages文件夹中包含了PASCAL VOC所提供的所有的图片信息,包括了训练图片和测试图片。
这些图像都是以“年份_编号.jpg”格式命名的。
图片的像素尺寸大小不一,但是横向图的尺寸大约在500*375左右,纵向图的尺寸大约在375*500左右,
基本不会偏差超过100。(在之后的训练中,第一步就是将这些图片都resize到300*300或是500*500,所有原始图片不能离这个标准过远。)
这些图像就是用来进行训练和测试验证的图像数据。
②Annotations
Annotations文件夹中存放的是xml格式的标签文件,每一个xml文件都对应于JPEGImages文件夹中的一张图片。
xml文件的具体格式如下:(对于2007_000392.jpg)
  1. <annotation>
  2. <folder>VOC2012</folder>
  3. <filename>2007_000392.jpg</filename>                               //文件名
  4. <source>                                                           //图像来源(不重要)
  5. <database>The VOC2007 Database</database>
  6. <annotation>PASCAL VOC2007</annotation>
  7. <image>flickr</image>
  8. </source>
  9. <size>                                               //图像尺寸(长宽以及通道数)
  10. <width>500</width>
  11. <height>332</height>
  12. <depth>3</depth>
  13. </size>
  14. <segmented>1</segmented>                                   //是否用于分割(在图像物体识别中01无所谓)
  15. <object>                                                           //检测到的物体
  16. <name>horse</name>                                         //物体类别
  17. <pose>Right</pose>                                         //拍摄角度
  18. <truncated>0</truncated>                                   //是否被截断(0表示完整)
  19. <difficult>0</difficult>                                   //目标是否难以识别(0表示容易识别)
  20. <bndbox>                                                   //bounding-box(包含左下角和右上角xy坐标)
  21. <xmin>100</xmin>
  22. <ymin>96</ymin>
  23. <xmax>355</xmax>
  24. <ymax>324</ymax>
  25. </bndbox>
  26. </object>
  27. <object>                                                           //检测到多个物体
  28. <name>person</name>
  29. <pose>Unspecified</pose>
  30. <truncated>0</truncated>
  31. <difficult>0</difficult>
  32. <bndbox>
  33. <xmin>198</xmin>
  34. <ymin>58</ymin>
  35. <xmax>286</xmax>
  36. <ymax>197</ymax>
  37. </bndbox>
  38. </object>
  39. </annotation>

对应的图片为:

 
③ImageSets
ImageSets存放的是每一种类型的challenge对应的图像数据。
在ImageSets下有四个文件夹:
其中Action下存放的是人的动作(例如running、jumping等等,这也是VOC challenge的一部分)
Layout下存放的是具有人体部位的数据(人的head、hand、feet等等,这也是VOC challenge的一部分)
Main下存放的是图像物体识别的数据,总共分为20类。
Segmentation下存放的是可用于分割的数据。
在这里主要考察Main文件夹。
Main文件夹下包含了20个分类的***_train.txt、***_val.txt和***_trainval.txt。
这些txt中的内容都差不多如下:
前面的表示图像的name,后面的1代表正样本,-1代表负样本。
_train中存放的是训练使用的数据,每一个class的train数据都有5717个。
_val中存放的是验证结果使用的数据,每一个class的val数据都有5823个。
_trainval将上面两个进行了合并,每一个class有11540个。
需要保证的是train和val两者没有交集,也就是训练数据和验证数据不能有重复,在选取训练数据的时候 ,也应该是随机产生的。
 
④SegmentationClass和SegmentationObject
这两个文件夹下保存了物体分割后的图片,在物体识别中没有用到,在这里不做详细展开。
接下来需要研究的是如何自己生成训练数据和测试数据,将在下一篇中阐述。
 
转自:http://blog.csdn.net/zhangjunbob/article/details/52769381
 

PASCAL VOC数据集分析(转)的更多相关文章

  1. 【计算机视觉】PASCAL VOC数据集分析

    PASCAL VOC数据集分析 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge. 本文主要分析PASCAL V ...

  2. PASCAL VOC数据集分析

    http://blog.csdn.net/zhangjunbob/article/details/52769381

  3. 【Detection】物体识别-制作PASCAL VOC数据集

    PASCAL VOC数据集 PASCAL VOC为图像识别和分类提供了一整套标准化的优秀的数据集,从2005年到2012年每年都会举行一场图像识别challenge 默认为20类物体 1 数据集结构 ...

  4. 自动化工具制作PASCAL VOC 数据集

    自动化工具制作PASCAL VOC 数据集   1. VOC的格式 VOC主要有三个重要的文件夹:Annotations.ImageSets和JPEGImages JPEGImages 文件夹 该文件 ...

  5. PASCAL VOC数据集The PASCAL Object Recognition Database Collection

    The PASCAL Object Recognition Database Collection News 04-Apr-07: The VOC2007 challenge development ...

  6. 【Tensorflow】 Object_detection之训练PASCAL VOC数据集

    参考:Running Locally 1.检查数据.config文件是否配置好 可参考之前博客: Tensorflow Object_detection之配置Training Pipeline Ten ...

  7. YOLO v3 & Pascal VOC数据集

    代码地址:https://github.com/YunYang1994/tensorflow-yolov3 https://hackernoon.com/understanding-yolo-f5a7 ...

  8. Pascal VOC & COCO数据集介绍 & 转换

    目录 Pascal VOC & COCO数据集介绍 Pascal VOC数据集介绍 1. JPEGImages 2. Annotations 3. ImageSets 4. Segmentat ...

  9. Python生成PASCAL VOC格式的xml标注文件

    Python生成PASCAL VOC格式的xml标注文件 PASCAL VOC数据集的标注文件是xml格式的.对于py-faster-rcnn,通常以下示例的字段是合适的: <annotatio ...

随机推荐

  1. Android开发——为EditText添加烟花效果的实现

    )什么时候发射烟花:监听EditText的文字改变,获取文字数量的变化以确定风的方向,还有获取光标的位置确定爆炸的位置.光标的位置没有具体的方法确定坐标,要通过反射自己计算. 2.  主要实现类 库里 ...

  2. 欧几里得算法(及扩展)&&快速幂(二分+位运算)

    最近在二中苦逼地上课,天天听数论(当然听不懂) 但是,简单的还是懂一点的 1.欧几里得算法 说得这么高级干什么,gcd入门一个月的人都会吧,还需要BB? 证明可参照其他博客(不会),主要就是gcd(a ...

  3. S5PV210 DDR2初始化 28个步骤总结

    看了一套视频,感觉DDR这个部分将的非常细致也很好,于是把视频内容花了一个多星期作了总结. 这个视频就是不知道是谁讲的,做好事不留名啊---那位知道告诉我哈-- 平台:S5PV210 DDR: 兼容 ...

  4. 探索sklearn | K均值聚类

    1 K均值聚类 K均值聚类是一种非监督机器学习算法,只需要输入样本的特征 ,而无需标记. K均值聚类首先需要随机初始化K个聚类中心,然后遍历每一个样本,将样本归类到最近的一个聚类中,一个聚类中样本特征 ...

  5. vs编译器好多下划波浪线但不报错

    解决办法:项目属性->c/c++->常规->附加包含目录->$(ProjectDir): $(ProjectDir) 项目的目录(定义形式:驱动器 + 路径):包括尾部的反斜杠 ...

  6. [BZOJ1135][POI2009]Lyz[霍尔定理+线段树]

    题意 题目链接 分析 这个二分图匹配模型直接建图的复杂度太高,考虑霍尔定理. 对于某些人组成的区间,我们只需要考虑他们的并是一段连续的区间的集合.更进一步地,我们考虑的人一定是连续的. 假设我们考虑的 ...

  7. C#调用python文件执行

    我的电脑环境是使用.net framework4.5.1,如果在调试过程中调不通请注意 我用的是Visual studion 2017,python组件下载地址:http://ironpython.c ...

  8. VC++ 屏蔽掉警告

    使用VC6.0在开发程序的时候经常会遇到很多警告,很麻烦,也很耽误时间,可以使用如下方法屏蔽掉警告 在StdAfx.h 中 #define VC_EXTRALEAN 下面增加:#pragma warn ...

  9. java的struts2项目实现网站首页只显示域名不显示index.do的做法

    自己的网站快做完了,发现首页显示的时候总是跳转到http://www.xxxxxx.com/index.do 而我想让http://www.xxxxxx.com/ 这样的方式来访问,不想带有后边的in ...

  10. Macaca初体验-PC端(Python)

    前言: Macaca 是一套面向用户端软件的测试解决方案,提供了自动化驱动,周边工具,集成方案.由阿里巴巴公司开源:http://macacajs.github.io/macaca/ 特点: 同时支持 ...