Sumsets
Time Limit: 2000MS   Memory Limit: 200000K
Total Submissions: 19024   Accepted: 7431

Description

Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:

1) 1+1+1+1+1+1+1 
2) 1+1+1+1+1+2 
3) 1+1+1+2+2 
4) 1+1+1+4 
5) 1+2+2+2 
6) 1+2+4

Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000). 

Input

A single line with a single integer, N.

Output

The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).

Sample Input

7

Sample Output

6

Source

USACO 2005 January Silver

——————————————————————————————————

题目的意思是给出一个数问把他变成若干个2^x的数累加,问有多少种不同情况

思路:方法一:dp,完全背包 +打表

方法二:分析可知对于第i项,i为奇数项就等于i-1项的值,i为偶数项就等于i-1项    加上i/2项的值(把i/2项每个数*2)

方法一:可能会超时,看判题机状态

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits> using namespace std; #define LL long long
const int INF = 0x3f3f3f3f;
const int mod=1000000000;
int dp[1000005]; int main()
{
int n;
memset(dp,0,sizeof dp);
dp[0]=1;
for(int i=0;i<=20;i++)
{
int k=pow(2,i);
for(int j=k;j<1000005;j++)
{
dp[j]=(dp[j]+dp[j-k])%mod;
}
}
while(~scanf("%d",&n)){
printf("%d\n",dp[n]); } return 0;
}

  

方法二:效率较高

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <stack>
#include <map>
#include <climits> using namespace std; #define LL long long
const int INF = 0x3f3f3f3f;
const int mod=1000000000;
int dp[1000005]; int main()
{
int n;
memset(dp,0,sizeof dp);
dp[1]=1;
for(int j=2;j<1000005;j++)
{
if(j%2)
dp[j]=dp[j-1]%mod;
else
dp[j]=(dp[j-1]+dp[j/2])%mod;
}
while(~scanf("%d",&n)){
printf("%d\n",dp[n]); } return 0;
}

  

POJ2229 Sumsets的更多相关文章

  1. POJ2229 Sumsets 【递归】

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 13210   Accepted: 5300 Descrip ...

  2. [USACO2005][poj2229]Sumsets(递推)

    http://poj.org/problem?id=2229 分析: 显然的递推 若n为奇数,那么肯定是在n-1的基础上前面每个数+1,即f[n]=f[n-1] 若n为偶数 当第一位数字是1的时候,等 ...

  3. POJ2229 - Sumsets(完全背包)

    题目大意 给定一个数N,问由不同的2的幂之和能组成N的方法有多少种 题解 看完题目立马想到完全背包...敲完代码上去超时了....后来发现是%的原因...改成减法就A了...%也太他妈耗时了吧!!!( ...

  4. poj2229 Sumsets (递推)

    http://poj.org/problem?id=2229 看到题目能感觉到多半是动态规划,但是没有清晰的思路. 打表找规律: #include<cstdio> #include< ...

  5. 《挑战程序设计竞赛》2.3 动态规划-基础 POJ3176 2229 2385 3616 3280

    POJ3176 Cow Bowling 题意 输入一个n层的三角形,第i层有i个数,求从第1层到第n层的所有路线中,权值之和最大的路线. 规定:第i层的某个数只能连线走到第i+1层中与它位置相邻的两个 ...

  6. 子集和问题(应用--换零钱)POJ2229:Sumsets

    我一直在纠结换零钱这一类型的题目,今天好好絮叨一下,可以说他是背包的应用,也可以说他是单纯的dp.暂且称他为dp吧. 先上一道模板题目. sdut2777: 小P的故事——神奇的换零钱 题目描述 已知 ...

  7. 【POJ - 2229】Sumsets(完全背包)

    Sumsets 直接翻译了 Descriptions Farmer John 让奶牛们找一些数加起来等于一个给出的数N.但是奶牛们只会用2的整数幂.下面是凑出7的方式 1) 1+1+1+1+1+1+1 ...

  8. POJ 2229 Sumsets

    Sumsets Time Limit: 2000MS   Memory Limit: 200000K Total Submissions: 11892   Accepted: 4782 Descrip ...

  9. HDU 2709 Sumsets(递推)

    Sumsets http://acm.hdu.edu.cn/showproblem.php?pid=2709 Problem Description Farmer John commanded his ...

随机推荐

  1. 织梦替换百度编辑器后栏目内容、单页无法保存bug修复

    找了一些教程是错的,这个测试过是正确的. 修改后台文件dede>templets>catalog_add.htm和catalog_edit.htm 一.在catalog_add.htm大概 ...

  2. 将文件中的内容读取到map中,并排除不需要的关键字然后输出

  3. iOS.Crash.Case-[__NSArrayM objectForKeyedSubscript:]

    1. [__NSArrayM objectForKeyedSubscript:]: unrecognized selector sent to instance - source code and s ...

  4. Games.RecordMobileGamePlayVideo

    1. kamcord https://github.com/kamcord/ 2. Sound Stage & iSimulate http://blog.tacograveyard.com/ ...

  5. javascript 高级程序设计 八

    function 类型: 1.ECMAscript中函数和类C语言的函数有这很多不同.其中之一就是js的函数没有重载.并且多次定义一个同名的函数,当调用这个函数的时候, 会调用最后一次定义的函数. 2 ...

  6. 文档根元素 "mapper" 必须匹配 DOCTYPE 根 "configuration"

    该问题是因为xml的头部写错了,一个是configuration,一个是mapper,不能直接复制. 参考链接:http://blog.csdn.net/testcs_dn/article/detai ...

  7. python实现文件下载图片视频

    最近在学习爬虫,在爬取网站时很多时候是需要将图片或视频下载到本地 今天就来说说如何使用urllib将图片保存到本地 以下代码均为win7  python3.6.* 方法一(使用下载函数保存) from ...

  8. P1083龙舟比赛

    题目如下: 现在正在举行龙舟比赛,我们现在获得了最后冲刺时的俯视图像,现在你要输出各条龙舟的名次. 这张图像由r行c列的字符组成,每行的最左边的字符表示起点,所以字符为'S',最右边的字符为'F'.并 ...

  9. Java中创建对象的四种方法

    第一种 使用new关键字 第二种 使用反射技术:1)通过Class类的newInstance()方法:2)通过Constructor类的newInstance方法 第三种 通过Object类的clon ...

  10. vue input,textarea失去焦点调用函数方法

    <input type="number" class="num" value="1" @blur.prevent="chan ...