多项式fft、ntt、fwt 总结
做了四五天的专题,但是并没有刷下多少题。可能一开始就对多项式这块十分困扰,很多细节理解不深。
最简单的形式就是直接两个多项式相乘,也就是多项式卷积,式子是$N^2$的。多项式算法的过程就是把卷积做一种变换,在变换后各系数相称得到新系数。其实这一步变换的构造过程挺深奥的,并不是很会。对于多项式卷积的变换就是点值。于是就有了快速变换这样的算法。
细节问题出过很多。边界的问题容易弄错。一般如果是两个N项多项式相乘,得到的是一个$2*N-1$项的多项式,这是存在系数的,只不过一般我们只要N项的结果,所以做fft、ntt的时候总项数从$2*N$开始计算。其实这样解释比较牵强,但是原理的解释我并不清楚,稍感性理解。
多项式卷积应该化成类似i+j=k的形式,其实差值为k也是可以卷积的(翻转一个序列,这样得到的结果序列也是反的)。
fwt处理位运算形式的卷积,同样分治法。位运算是针对下标的,分治的时候考虑好左右两半的子答案的贡献。
多项式全家桶,基础是求导、积分。有时候一些式子不是直接两个相乘得到另一个,可能还要先求出逆元再变回去。这时候用到的就是关于多项式的各种运算。
具体的题目好多是和卷积、“各种数和各种反演”有关,把式子化成卷积形式进行优化。
没有时间写每个题解了,做题也很少,好多东西还没学。这块综合了不少东西,前置内容就有很多。
可能多项式要咕一大截了,难受。
多项式fft、ntt、fwt 总结的更多相关文章
- [学习笔记&教程] 信号, 集合, 多项式, 以及各种卷积性变换 (FFT,NTT,FWT,FMT)
目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理 ...
- $FFT/NTT/FWT$题单&简要题解
打算写一个多项式总结. 虽然自己菜得太真实了. 好像四级标题太小了,下次写博客的时候再考虑一下. 模板 \(FFT\)模板 #include <iostream> #include < ...
- 多项式FFT/NTT模板(含乘法/逆元/log/exp/求导/积分/快速幂)
自己整理出来的模板 存在的问题: 1.多项式求逆常数过大(尤其是浮点数FFT) 2.log只支持f[0]=1的情况,exp只支持f[0]=0的情况 有待进一步修改和完善 FFT: #include&l ...
- FFT \ NTT总结(多项式的构造方法)
前言.FFT NTT 算法 网上有很多,这里不再赘述. 模板见我的代码库: FFT:戳我 NTT:戳我 正经向:FFT题目解题思路 \(FFT\)这个玩意不可能直接裸考的..... 其实一般\(FF ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ
众所周知,tzc 在 2019 年(12 月 31 日)就第一次开始接触多项式相关算法,可到 2021 年(1 月 1 日)才开始写这篇 blog. 感觉自己开了个大坑( 多项式 多项式乘法 好吧这个 ...
- FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅲ
第三波,走起~~ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅰ FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ 单位根反演 今天打多校时 1002 被卡科技了 ...
- FFT/NTT/MTT学习笔记
FFT/NTT/MTT Tags:数学 作业部落 评论地址 前言 这是网上的优秀博客 并不建议初学者看我的博客,因为我也不是很了解FFT的具体原理 一.概述 两个多项式相乘,不用\(N^2\),通过\ ...
- FFT&NTT总结
FFT&NTT总结 一些概念 \(DFT:\)离散傅里叶变换\(\rightarrow O(n^2)\)计算多项式卷积 \(FFT:\)快速傅里叶变换\(\rightarrow O(nlogn ...
- 快速构造FFT/NTT
@(学习笔记)[FFT, NTT] 问题概述 给出两个次数为\(n\)的多项式\(A\)和\(B\), 要求在\(O(n \log n)\)内求出它们的卷积, 即对于结果\(C\)的每一项, 都有\[ ...
- FFT&NTT数学解释
FFT和NTT真是噩梦呢 既然被FFT和NTT坑够了,坑一下其他的人也未尝不可呢 前置知识 多项式基础知识 矩阵基础知识(之后会一直用矩阵表达) FFT:复数基础知识 NTT:模运算基础知识 单位根介 ...
随机推荐
- background 背景图片 --css3
background 1.设置背景平铺background-repeat round :图片会进行缩放后平铺space : 图片会进行平铺,中间留下空白空间 注:当滚动行为设为fixed,round和 ...
- github 远程仓库名或地址修改,本地如何同步
1. 背景 远程服务器迁移,服务器IP改变:或者远程仓库名变更,导致本地仓库失效.如何在原有仓库的基础上让本地仓库和新的远程仓库建立关联. 例如: 本地git项目目录为:SingTel/ 本地添加的远 ...
- leetcode-111. 二叉树最小深度 · Tree + 递归
题面 找出二叉树的最小深度(从根节点到某个叶子节点路径上的节点个数最小). 算法 算法参照二叉树的最大深度,这里需要注意的是当某节点的左右孩子都存在时,就返回左右子树的最小深度:如果不都存在,就需要返 ...
- 通过docker搭建ELK集群
单机ELK,另外两台服务器分别有一个elasticsearch节点,这样形成一个3节点的ES集群. 可以先尝试单独搭建es集群或单机ELK https://www.cnblogs.com/lz0925 ...
- Ubuntu 系统信息相关命令
系统信息相关命令 本节内容主要是为了方便通过远程终端维护服务器时,查看服务器上当前 系统日期和时间 / 磁盘空间占用情况 / 程序执行情况 本小结学习的终端命令基本都是查询命令,通过这些命令对系统资源 ...
- jquery进行each遍历时,根据条件取消某项操作
示例代码: <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" c ...
- 连接mongodb服务器
连接mongodb有几种方法 一种是使用mongodb编译时生成的客户端进行连接,就是我们之前介绍过的mongo客户端 另一种是使用各种驱动进行连接 这次使用mongo客户端进行连接,之前我们启动了一 ...
- Wireless Network(并查集)
POJ - 2236 #include<iostream> #include<algorithm> #include<cstring> #include<cm ...
- bloomberg bulkFile解析
文章导航 bloomberg bulkfile解析 bloomberg bulkfile 在oracle的存储 准备工作: Bloomberg 提供了以下文件 1 . fields.csv 下载地址: ...
- P1004 方格取数[棋盘dp]
题目来源:洛谷 题目描述 设有N×N的方格图(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 0 13 0 0 ...