【51nod】1776 路径计数
【51nod】1776 路径计数
我们先把前两种数给排好,排好之后会有\(a + b + 1\)个空隙可以填数,我们计算有\(k\)个空隙两端都是相同字母的方案数
可以用枚举把第二种数分成几段插进去来算,设这个方案数为\(f[k]\)
然后对于一种有\(k\)个空隙的方案数,枚举剩下的\(a + b + 1 - k\)个空隙填了\(h\)个
然后计算把\(C\)和\(D\)分成\(k + h\)段的方案数就好了,记为\(g[k + h]\)
那么如何计算\(g[i]\)呢
一段要么是偶数,\(C\)和\(D\)个数相等,一段要么是奇数,\(C\)多或者\(D\)多
对于一个\(i\),强制认为\(C\)多的有\(j\)个,那么可以求出\(D\)多的是\(k\)个,剩下的必须两两配对,把剩下的\(i - j - k\),填成\(DC\)或者\(CD\),有两种方案
然后剩下的\(CD\)的对子,扔到\(i\)个区间中排列方法是唯一的,只要计算切成\(i\)段每段可以为空的方案数是多少就行了,是个组合数
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('\n')
#define eps 1e-10
#define ba 47
#define MAXN 1000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 998244353;
int fac[10005],invfac[10005],f[5005],g[5005],pw[5005];
int a[5],N;
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void update(int &x,int y) {
x = inc(x,y);
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
int C(int n,int m) {
if(n < m) return 0;
return mul(fac[n],mul(invfac[m],invfac[n - m]));
}
int main(){
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
fac[0] = 1;
for(int i = 1 ; i <= 10000 ; ++i) fac[i] = mul(fac[i - 1],i);
invfac[10000] = fpow(fac[10000],MOD - 2);
for(int i = 9999 ; i >= 0 ; --i) invfac[i] = mul(invfac[i + 1],i + 1);
pw[0] = 1;
for(int i = 1 ; i <= 5000 ; ++i) pw[i] = mul(pw[i - 1],2);
while(scanf("%d%d%d%d",&a[0],&a[1],&a[2],&a[3]) != EOF) {
N = a[0] + a[1] + a[2] + a[3];
if(!N) {puts("1");continue;}
memset(f,0,sizeof(f));
memset(g,0,sizeof(g));
for(int i = 1 ; i <= a[2] + a[3] ; ++i) {
for(int j = 0 ; j <= min(i,a[2]) ; ++j) {
if(a[3] < a[2] - j) continue;
int k = a[3] - (a[2] - j);
if(j + k > i) continue;
if(a[2] - j < i - j - k) continue;
int t = 1;
t = mul(t,C(i,j));t = mul(t,C(i - j,k));
t = mul(t,pw[i - j - k]);
int rem = a[2] - j - (i - j - k);
t = mul(t,C(rem + i - 1,i - 1));
update(g[i],t);
}
}
for(int i = 1 ; i <= a[1] ; ++i) {
int t = C(a[1] - 1,i - 1);
for(int k = max(0,i - 2) ; k <= min(a[0] - 1,i) ; ++k) {
int t0 = t;
t0 = mul(C(a[0] - 1,k),t0);t0 = mul(t0,C(2,i - k));
int p = a[0] - 1 - k + a[1] - i;
update(f[p],t0);
}
}
int ans = 0;
for(int i = 0 ; i <= a[0] + a[1] ; ++i) {
if(!f[i]) continue;
for(int h = a[0] + a[1] + 1 - i ; h >= 0 ; --h) {
int c = mul(f[i],g[i + h]);
c = mul(c,C(a[0] + a[1] + 1 - i,h));
update(ans,c);
}
}
out(ans);enter;
}
}
【51nod】1776 路径计数的更多相关文章
- 51 nod 1610 路径计数(Moblus+dp)
1610 路径计数 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 路径上所有边权的最大公约数定义为一条路径的值. 给定一个有向无环图.T次修改操作,每次修改一 ...
- 51nod 1682 中位数计数
1682 中位数计数基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均 ...
- 蓝桥杯 历届试题 网络寻路(dfs搜索合法路径计数)
X 国的一个网络使用若干条线路连接若干个节点.节点间的通信是双向的.某重要数据包,为了安全起见,必须恰好被转发两次到达目的地.该包可能在任意一个节点产生,我们需要知道该网络中一共有多少种不同的转发路径 ...
- 51nod 1682 中位数计数(前缀和)
51nod 1682 中位数计数 思路: sum[i]表示到i为止的前缀和(比a[i]小的记为-1,相等的记为0,比a[i]大的记为1,然后求这些-1,0,1的前缀和): hash[sum[i]+N] ...
- 堆优化Dijkstra计算最短路+路径计数
今天考试的时候遇到了一道题需要路径计数,然而蒟蒻从来没有做过,所以在考场上真的一脸懵逼.然后出题人NaVi_Awson说明天考试还会卡SPFA,吓得我赶紧又来学一波堆优化的Dijkstra(之前只会S ...
- 【洛谷】P1176: 路径计数2【递推】
P1176 路径计数2 题目描述 一个N×N的网格,你一开始在(1,1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N),即右下角有多少种方法. 但是这个问题太简单了,所以 ...
- 牛客网 暑期ACM多校训练营(第一场)A.Monotonic Matrix-矩阵转化为格子路径的非降路径计数,Lindström-Gessel-Viennot引理-组合数学
牛客网暑期ACM多校训练营(第一场) A.Monotonic Matrix 这个题就是给你一个n*m的矩阵,往里面填{0,1,2}这三种数,要求是Ai,j⩽Ai+1,j,Ai,j⩽Ai,j+1 ,问你 ...
- 洛谷——P1176 路径计数2
P1176 路径计数2 题目描述 一个N \times NN×N的网格,你一开始在(1,1)(1,1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N)(N,N),即右下角有 ...
- 洛谷 P1176 路径计数2
P1176 路径计数2 题目描述 一个N×N的网格,你一开始在(1, 1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N, N),即右下角有多少种方法. 但是这个问题太简单了, ...
随机推荐
- 下面的代码在Python2中的输出是什么?解释你的答案
python2 def div1(x,y): print "%s/%s = %s" % (x, y, x/y) def div2(x,y): print "%s//%s ...
- A·F·O小记
看过很多的游记,也看过很多的退役记.回忆录,而当自己真正去面对的那一刻,却又不知道从何说起,也不知道能用怎样的形式和语言,才能把这段珍贵的记忆封存起来,留作青春里的一颗璀璨明珠…… 还是随便写写吧…… ...
- BZOJ2716天使玩偶
不会KD-tree怎么办?CQD硬搞. 建立正常的平面直角坐标系,首先我们只考虑在目标点左下角的点对目标点的贡献,由于左下点的横纵坐标都小于目标点,那么曼哈顿距离就可以化简了,绝对值去掉后,得到$x2 ...
- [ambari环境搭建](未完待续)
[安装] https://blog.csdn.net/Happy_Sunshine_Boy/article/details/86595945#commentBox https://www.jiansh ...
- BeanFactory 简介以及它 和FactoryBean的区别
BeanFacotry是spring中比较原始的Factory.如XMLBeanFactory就是一种典型的BeanFactory.原始的BeanFactory无法支持spring的许多插件,如AOP ...
- JVM 堆内存溢出后,其他线程是否可继续工作
最近网上出现一个美团面试题:“一个线程OOM后,其他线程还能运行吗?”.我看网上出现了很多不靠谱的答案.这道题其实很有难度,涉及的知识点有jvm内存分配.作用域.gc等,不是简单的是与否的问题. 由于 ...
- 【零基础】神经网络优化之dropout和梯度校验
一.序言 dropout和L1.L2一样是一种解决过拟合的方法,梯度检验则是一种检验“反向传播”计算是否准确的方法,这里合并简单讲述,并在文末提供完整示例代码,代码中还包含了之前L2的示例,全都是在“ ...
- 咏南中间件新增MORMOT插件功能
咏南中间件新增MORMOT插件功能 咏南中间件支持DATASNAP和MORMOT两种通讯框架. 原来已经支持DATASNAP插件,现在又增加了MORMOT插件,已经支持DATASNAP和MORMOT两 ...
- 【译】Solr in Action 第二章
2.1 2.2 2.3 基本废话 2.4 基本废话
- Nginx中文文档-安装 Nginx
nginx可以使用各平台的默认包来安装,本文是介绍使用源码编译安装,包括具体的编译参数信息. 正式开始前,编译环境gcc g++ 开发库之类的需要提前装好,这里默认你已经装好. ububtu平台编译环 ...