O(n) O(log n) blist: an asymptotically faster list-like type for Python
https://pypi.org/project/blist/
blist: an asymptotically faster list-like type for Python — blist 1.3.6 documentation http://stutzbachenterprises.com/blist/
The blist is a drop-in replacement for the Python list that provides better performance when modifying large lists. The blist package also provides sortedlist, sortedset, weaksortedlist, weaksortedset, sorteddict, and btuple types.
Full documentation is at the link below:
http://stutzbachenterprises.com/blist-doc/
Python’s built-in list is a dynamically-sized array; to insert or remove an item from the beginning or middle of the list, it has to move most of the list in memory, i.e., O(n) operations. The blist uses a flexible, hybrid array/tree structure and only needs to move a small portion of items in memory, specifically using O(log n) operations.
For small lists, the blist and the built-in list have virtually identical performance.
To use the blist, you simply change code like this:
>>> items = [5, 6, 2]
>>> more_items = function_that_returns_a_list()
to:
>>> from blist import blist
>>> items = blist([5, 6, 2])
>>> more_items = blist(function_that_returns_a_list())
Here are some of the use cases where the blist asymptotically outperforms the built-in list:
Use Case | blist | list |
---|---|---|
Insertion into or removal from a list | O(log n) | O(n) |
Taking slices of lists | O(log n) | O(n) |
Making shallow copies of lists | O(1) | O(n) |
Changing slices of lists | O(log n + log k) | O(n+k) |
Multiplying a list to make a sparse list | O(log k) | O(kn) |
Maintain a sorted lists with bisect.insort | O(log**2 n) | O(n) |
So you can see the performance of the blist in more detail, several performance graphs available at the following link: http://stutzbachenterprises.com/blist/
Example usage:
>>> from blist import *
>>> x = blist([0]) # x is a blist with one element
>>> x *= 2**29 # x is a blist with > 500 million elements
>>> x.append(5) # append to x
>>> y = x[4:-234234] # Take a 500 million element slice from x
>>> del x[3:1024] # Delete a few thousand elements from x
Other data structures
The blist package provides other data structures based on the blist:
- sortedlist
- sortedset
- weaksortedlist
- weaksortedset
- sorteddict
- btuple
These additional data structures are only available in Python 2.6 or higher, as they make use of Abstract Base Classes.
The sortedlist is a list that’s always sorted. It’s iterable and indexable like a Python list, but to modify a sortedlist the same methods you would use on a Python set (add, discard, or remove).
>>> from blist import sortedlist
>>> my_list = sortedlist([3,7,2,1])
>>> my_list
sortedlist([1, 2, 3, 7])
>>> my_list.add(5)
>>> my_list[3]
5
>>>
The sortedlist constructor takes an optional “key” argument, which may be used to change the sort order just like the sorted() function.
>>> from blist import sortedlist
>>> my_list = sortedlist([3,7,2,1], key=lambda i: -i)
sortedlist([7, 3, 2, 1]
>>>
The sortedset is a set that’s always sorted. It’s iterable and indexable like a Python list, but modified like a set. Essentially, it’s just like a sortedlist except that duplicates are ignored.
>>> from blist import sortedset
>>> my_set = sortedset([3,7,2,2])
sortedset([2, 3, 7]
>>>
The weaksortedlist and weaksortedset are weakref variations of the sortedlist and sortedset.
The sorteddict works just like a regular dict, except the keys are always sorted. The sorteddict should not be confused with Python 2.7’s OrderedDict type, which remembers the insertion order of the keys.
>>> from blist import sorteddict
>>> my_dict = sorteddict({1: 5, 6: 8, -5: 9})
>>> my_dict.keys()
[-5, 1, 6]
>>>
The btuple is a drop-in replacement for the built-in tuple. Compared to the built-in tuple, the btuple offers the following advantages:
- Constructing a btuple from a blist takes O(1) time.
- Taking a slice of a btuple takes O(n) time, where n is the size of the original tuple. The size of the slice does not matter.
>>> from blist import blist, btuple
>>> x = blist([0]) # x is a blist with one element
>>> x *= 2**29 # x is a blist with > 500 million elements
>>> y = btuple(x) # y is a btuple with > 500 million elements
Installation instructions
Python 2.5 or higher is required. If building from the source distribution, the Python header files are also required. In either case, just run:
python setup.py install
If you’re running Linux and see a bunch of compilation errors from GCC, you probably do not have the Python header files installed. They’re usually located in a package called something like “python2.6-dev”.
The blist package will be installed in the ‘site-packages’ directory of your Python installation. (Unless directed elsewhere; see the “Installing Python Modules” section of the Python manuals for details on customizing installation locations, etc.).
If you downloaded the source distribution and wish to run the associated test suite, you can also run:
python setup.py test
which will verify the correct installation and functioning of the package. The tests require Python 2.6 or higher.
Feedback
We’re eager to hear about your experiences with the blist. You can email me at daniel@stutzbachenterprises.com. Alternately, bug reports and feature requests may be reported on our bug tracker at: http://github.com/DanielStutzbach/blist/issues
How we test
In addition to the tests include in the source distribution, we perform the following to add extra rigor to our testing process:
- We use a “fuzzer”: a program that randomly generates list operations, performs them using both the blist and the built-in list, and compares the results.
- We use a modified Python interpreter where we have replaced the array-based built-in list with the blist. Then, we run all of the regular Python unit tests.
O(n) O(log n) blist: an asymptotically faster list-like type for Python的更多相关文章
- 自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本 (转载)
自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本 转自:https://www.cnblogs.com/ailiailan/p/8304989.html 作为测试, ...
- 自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本
作为测试,在测试工作中一定会经常抓log,有时log收集时间很长,导致log很大,可能达到几G,想找到能打开如此大的log文件的工具都会变得困难:即使log不大时,我们可以直接把log发给开发同学去分 ...
- 脚本自动统计安卓log中Anr、Crash等出现的数量(Python)
作为测试,在测试工作中一定会经常抓log,有时log收集时间很长,导致log很大,可能达到几G,想找到能打开如此大的log文件的工具都会变得困难:即使log不大时,我们可以直接把log发给开发同学去分 ...
- Mininet在创建拓扑的过程中为什么不打印信息了——了解Mininet的log系统
前言 写这篇博客是为了给我的愚蠢和浪费的6个小时买单! 过程原因分析 我用Mininet创建过不少拓扑了,这次创建的拓扑非常简单,如下图,创建拓扑的代码见github.在以前的拓扑创建过程中,我都是用 ...
- openstack 中 log模块分析
1 . 所在模块,一般在openstack/common/log.py,其实最主要的还是调用了python中的logging模块: 入口函数在 def setup(product_name, vers ...
- Log4Net .NET log处理
1.NuGet 安装Log4Net. 2.新建一个Common的project,并且添加一个LogWriter的类: public class LogWriter { //Error log publ ...
- python 每日一练: 读取log文件中的数据,并画图表
之前在excel里面分析log数据,简直日了*了. 现在用python在处理日志数据. 主要涉及 matplotlib,open和循环的使用. 日志内容大致如下 2016-10-21 21:07:59 ...
- ubuntu运行命令tee显示和保存为log
一般有三种需求: 假如我要执行一个py文件 python class.py 1:将命令输出结果保存到文件log.log python class.py |tee log.log 结果就是:屏幕输出和直 ...
- ORACLE LOG的管理
CREATE OR REPLACE PACKAGE PLOG IS /** * package name : PLOG *<br/> *<br/> *See : <a h ...
随机推荐
- DataGrip像navicat一样导入导出表数据,不是导出导入insert和update这种
用的是mysql,其他也一样 首先是导出: 然后: 然后就可以导出了,导出去别的工具能不能拿来导入不知道... 然后是导入: 然后:
- Pycharm 社区版本Database Navigator 安装教程
虽然Pycharm有专业版和社区版这两个版本,但是在大多数情况下我们都会选择社区版进行下载安装.为啥呢?因为社区版免费呗,而且能够基本满足我们的日常需求(这也就意味着社区版会比专业版少一些功能).针对 ...
- 数组中的filter,every,some,find,findIndex
这些都是es5中数组新增的方法,一旦用到还是觉得挺实用的 var arr = [0,12,4,6,8]; var res = arr.filter(function(item,index,Arr){ ...
- DDD总览
DDD总览 领域驱动设计(DDD)编码实践 目录 写在前面DDD总览实现业务的3种常见方式基于业务的分包领域模型的门面——应用服务业务的载体——聚合根实体 vs 值对象聚合根的家——资源库创生之柱 ...
- lua游戏开发易错踩坑录
一.local local函数一定要在调用之前定义(切记,不然会报错或者不能调用该函数) 情况1:监听调此函数后定义 base.model:addlistener("被监听的函数" ...
- 并发编程大师系列之:wait/notify/notifyAll/condition
1. wait().notify()和notifyAll()方法是本地方法,并且为final方法,无法被重写. 2. 调用某个对象的wait()方法能让当前线程阻塞,并且当前线程必须拥有此对象的mon ...
- 利用python中的库文件简单的展示mnist 中的数据图像
import sys, os sys.path.append('F:\ml\DL\source-code') #导入此路径中 from dataset.mnist import load_mnist ...
- 进程间的通信----队列queue
import multiprocessing def download_from_web(q): """下载数据""" # 模拟下载数据 d ...
- docker(一) -- docker安装、容器加速、下载、备份
一.docker的 容器是从镜像中创建出来的虚拟实例 容器用来运行实例,是读写层 镜像用来安装程序,是只读层 1. docker的安装和基本操作 安装命令 yum -y update yum inst ...
- [Cypress] install, configure, and script Cypress for JavaScript web applications -- part4
Load Data from Test Fixtures in Cypress When creating integration tests with Cypress, we’ll often wa ...