O(n) O(log n) blist: an asymptotically faster list-like type for Python
https://pypi.org/project/blist/
blist: an asymptotically faster list-like type for Python — blist 1.3.6 documentation http://stutzbachenterprises.com/blist/
The blist is a drop-in replacement for the Python list that provides better performance when modifying large lists. The blist package also provides sortedlist, sortedset, weaksortedlist, weaksortedset, sorteddict, and btuple types.
Full documentation is at the link below:
http://stutzbachenterprises.com/blist-doc/
Python’s built-in list is a dynamically-sized array; to insert or remove an item from the beginning or middle of the list, it has to move most of the list in memory, i.e., O(n) operations. The blist uses a flexible, hybrid array/tree structure and only needs to move a small portion of items in memory, specifically using O(log n) operations.
For small lists, the blist and the built-in list have virtually identical performance.
To use the blist, you simply change code like this:
>>> items = [5, 6, 2]
>>> more_items = function_that_returns_a_list()
to:
>>> from blist import blist
>>> items = blist([5, 6, 2])
>>> more_items = blist(function_that_returns_a_list())
Here are some of the use cases where the blist asymptotically outperforms the built-in list:
| Use Case | blist | list |
|---|---|---|
| Insertion into or removal from a list | O(log n) | O(n) |
| Taking slices of lists | O(log n) | O(n) |
| Making shallow copies of lists | O(1) | O(n) |
| Changing slices of lists | O(log n + log k) | O(n+k) |
| Multiplying a list to make a sparse list | O(log k) | O(kn) |
| Maintain a sorted lists with bisect.insort | O(log**2 n) | O(n) |
So you can see the performance of the blist in more detail, several performance graphs available at the following link: http://stutzbachenterprises.com/blist/
Example usage:
>>> from blist import *
>>> x = blist([0]) # x is a blist with one element
>>> x *= 2**29 # x is a blist with > 500 million elements
>>> x.append(5) # append to x
>>> y = x[4:-234234] # Take a 500 million element slice from x
>>> del x[3:1024] # Delete a few thousand elements from x
Other data structures
The blist package provides other data structures based on the blist:
- sortedlist
- sortedset
- weaksortedlist
- weaksortedset
- sorteddict
- btuple
These additional data structures are only available in Python 2.6 or higher, as they make use of Abstract Base Classes.
The sortedlist is a list that’s always sorted. It’s iterable and indexable like a Python list, but to modify a sortedlist the same methods you would use on a Python set (add, discard, or remove).
>>> from blist import sortedlist
>>> my_list = sortedlist([3,7,2,1])
>>> my_list
sortedlist([1, 2, 3, 7])
>>> my_list.add(5)
>>> my_list[3]
5
>>>
The sortedlist constructor takes an optional “key” argument, which may be used to change the sort order just like the sorted() function.
>>> from blist import sortedlist
>>> my_list = sortedlist([3,7,2,1], key=lambda i: -i)
sortedlist([7, 3, 2, 1]
>>>
The sortedset is a set that’s always sorted. It’s iterable and indexable like a Python list, but modified like a set. Essentially, it’s just like a sortedlist except that duplicates are ignored.
>>> from blist import sortedset
>>> my_set = sortedset([3,7,2,2])
sortedset([2, 3, 7]
>>>
The weaksortedlist and weaksortedset are weakref variations of the sortedlist and sortedset.
The sorteddict works just like a regular dict, except the keys are always sorted. The sorteddict should not be confused with Python 2.7’s OrderedDict type, which remembers the insertion order of the keys.
>>> from blist import sorteddict
>>> my_dict = sorteddict({1: 5, 6: 8, -5: 9})
>>> my_dict.keys()
[-5, 1, 6]
>>>
The btuple is a drop-in replacement for the built-in tuple. Compared to the built-in tuple, the btuple offers the following advantages:
- Constructing a btuple from a blist takes O(1) time.
- Taking a slice of a btuple takes O(n) time, where n is the size of the original tuple. The size of the slice does not matter.
>>> from blist import blist, btuple
>>> x = blist([0]) # x is a blist with one element
>>> x *= 2**29 # x is a blist with > 500 million elements
>>> y = btuple(x) # y is a btuple with > 500 million elements
Installation instructions
Python 2.5 or higher is required. If building from the source distribution, the Python header files are also required. In either case, just run:
python setup.py install
If you’re running Linux and see a bunch of compilation errors from GCC, you probably do not have the Python header files installed. They’re usually located in a package called something like “python2.6-dev”.
The blist package will be installed in the ‘site-packages’ directory of your Python installation. (Unless directed elsewhere; see the “Installing Python Modules” section of the Python manuals for details on customizing installation locations, etc.).
If you downloaded the source distribution and wish to run the associated test suite, you can also run:
python setup.py test
which will verify the correct installation and functioning of the package. The tests require Python 2.6 or higher.
Feedback
We’re eager to hear about your experiences with the blist. You can email me at daniel@stutzbachenterprises.com. Alternately, bug reports and feature requests may be reported on our bug tracker at: http://github.com/DanielStutzbach/blist/issues
How we test
In addition to the tests include in the source distribution, we perform the following to add extra rigor to our testing process:
- We use a “fuzzer”: a program that randomly generates list operations, performs them using both the blist and the built-in list, and compares the results.
- We use a modified Python interpreter where we have replaced the array-based built-in list with the blist. Then, we run all of the regular Python unit tests.
O(n) O(log n) blist: an asymptotically faster list-like type for Python的更多相关文章
- 自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本 (转载)
自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本 转自:https://www.cnblogs.com/ailiailan/p/8304989.html 作为测试, ...
- 自动统计安卓log中Anr,Crash,Singnal出现数量的Python脚本
作为测试,在测试工作中一定会经常抓log,有时log收集时间很长,导致log很大,可能达到几G,想找到能打开如此大的log文件的工具都会变得困难:即使log不大时,我们可以直接把log发给开发同学去分 ...
- 脚本自动统计安卓log中Anr、Crash等出现的数量(Python)
作为测试,在测试工作中一定会经常抓log,有时log收集时间很长,导致log很大,可能达到几G,想找到能打开如此大的log文件的工具都会变得困难:即使log不大时,我们可以直接把log发给开发同学去分 ...
- Mininet在创建拓扑的过程中为什么不打印信息了——了解Mininet的log系统
前言 写这篇博客是为了给我的愚蠢和浪费的6个小时买单! 过程原因分析 我用Mininet创建过不少拓扑了,这次创建的拓扑非常简单,如下图,创建拓扑的代码见github.在以前的拓扑创建过程中,我都是用 ...
- openstack 中 log模块分析
1 . 所在模块,一般在openstack/common/log.py,其实最主要的还是调用了python中的logging模块: 入口函数在 def setup(product_name, vers ...
- Log4Net .NET log处理
1.NuGet 安装Log4Net. 2.新建一个Common的project,并且添加一个LogWriter的类: public class LogWriter { //Error log publ ...
- python 每日一练: 读取log文件中的数据,并画图表
之前在excel里面分析log数据,简直日了*了. 现在用python在处理日志数据. 主要涉及 matplotlib,open和循环的使用. 日志内容大致如下 2016-10-21 21:07:59 ...
- ubuntu运行命令tee显示和保存为log
一般有三种需求: 假如我要执行一个py文件 python class.py 1:将命令输出结果保存到文件log.log python class.py |tee log.log 结果就是:屏幕输出和直 ...
- ORACLE LOG的管理
CREATE OR REPLACE PACKAGE PLOG IS /** * package name : PLOG *<br/> *<br/> *See : <a h ...
随机推荐
- 七年开发经验详解JVM的GC 算法
概述 GC 是 JVM 自带的功能,它能够自动回收对象,清理内存,这是 Java 语言的一大优势,但是GC绝不仅伴随着Java,相反,GC历史比Java更悠久.关于GC,我认为有四个问题需要解决: 为 ...
- 记一次B类地址子网划分
说明:一般内网地址,没有要求严格的划分之类的.需要按要求严格划分一般都是公网地址 温馨提醒:由于笔者功底不是很深厚,只能说我们保证把数算对用相对简单的方法 现有一个公网ip,B类地址130.3.0.0 ...
- (转)大厂常问到的14个Java面试题
1. synchronized和reentrantlock异同 相同点 都实现了多线程同步和内存可见性语义 都是可重入锁 不同点 实现机制不同 synchronized通过java对象头锁标记和Mon ...
- Scala环境安装步骤
1.scala解释器本地安装 2.IDEA安装 3.安装IDEA的scala插件 4.创建maven项目 5.安装ScalaSDK
- Java中的经典算法之快速排序(Quick Sort)
Java中的经典算法之快速排序(Quick Sort) 快速排序的思想 基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小, 然后再按此方法对 ...
- mysql官方下载安装教程(centos)
Linux下Mysql 5.6.30 tar包安装 (2016-04-27 22:45:39) 转载▼ 环境:centos 6.4 x64 先下载mysql安装包 打开 http://dev.mysq ...
- 神经网络(3)---如何表示hypothesis,如何表示我们的model
大脑中的神经元 我们的大脑都充满了上图所示的神经元,神经元有一个细胞体(cell body),还有一些input wires,专业词汇叫做树突(dendrite),它们从其它地方接收输入信息,神经元还 ...
- Java:JVM的内存模型
JVM内存模型 JVM内存模型可以分为两个部分,如下图所示,堆和方法区是所有线程共有的,而虚拟机栈,本地方法栈和程序计数器则是线程私有的. 1. 堆(Heap) 堆内存是所有线程共有的,可以分为两 ...
- bootstrap之collapse
<div class="container"> <!--该button可以控制div是否显示 1.首先给button设置data-toggle="col ...
- easyUI--入门实例
ui框架 1.需要导入的所有jar包,以及外部的类或文件 1.1导入jar包 1.2导入WebContent外部资源 1.3导入所有需要的辅助类--Util包 2.实例代码 2.1创建TreeNode ...