题意

给一个\(n\times m\)的01矩阵,1代表有墙,否则没有,每一步可以从\(b[i][j]\)走到\(b[i+1][j]\),\(b[i][j-1]\),\(b[i][j+1]\),有两种询问:

  • \(q=1\),将\(b[x][y]\)的状态反转
  • \(q=2\),计算从\(b[1][x]\)走到\(b[n][y]\)的方案数

分析

先不考虑状态反转的情况,设\(dp[i][j]\)为从第\(i-1\)层经过\(b[i-1][j]\)到达\(b[i][j]\)的方案数

\[dp[i][j]=sum(dp[i-1][k]~for~(k<j~and~b[i-1][k]=b[i-1][k+1]=\dots=b[i-1][j]=0))\\
+sum(dp[i-1][k]~for~(k>j~and~b[i-1][k]=b[i-1][k-1]=\dots=b[i-1][j]=0))
\]

\(dp[i][j]\)等于\(b[i-1][j]\)向左和向右\(b[i-1][k]\)都等于0的那些\(dp[i-1][k]\)的和

0 0 0 1 0 0
1 0 1 0 1 0

例如当n=2,m=6时

\(dp[2][2]=dp[1][1]+dp[1][2]+dp[1][3]\)

\(dp[2][6]=dp[1][5]+dp[1][6]\)

第\(i\)行的dp值到第\(i+1\)行的dp值的转移可以用矩阵\(Mi\)实现

用上图的例子,从第1行转移到第2行

\[\left [ \begin{matrix}dp[1][1]\\dp[1][2]\\dp[1][3]\\dp[1][4]\\dp[1][5]\\dp[1][6]\end{matrix}\right ] \times
\left [ \begin{matrix}1&1&1&0&0&0\\1&1&1&0&0&0\\1&1&1&0&0&0\\0&0&0&0&0&0\\
0&0&0&0&1&1\\0&0&0&0&1&1\end{matrix}\right ]
=\left [ \begin{matrix}dp[2][1]\\dp[2][2]\\dp[2][3]\\dp[2][4]\\dp[2][5]\\dp[2][6]\end{matrix}\right ]
\]

求从\(b[1][x]\)走到\(b[n][y]\)的方案数,即令\(dp[1][x]=1\),求\(dp[n+1][y]\)。

若令\(ans=M_1\times M_2 \times M_3\times \dots \times M_n\)

则答案为\(ans[x][y]\)

用线段树维护\(M_1\dots M_n\),反转\(b[x][y]\)操作就变成了单点修改,问题就完美解决了

Code

#include<bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define lson l,mid,p<<1
#define rson mid+1,r,p<<1|1
#define ll long long
using namespace std;
const int inf=1e9;
const int mod=1e9+7;
const int maxn=5e4+10;
int n,m,q;
char b[maxn][11];
int a[maxn][11];
struct node{
ll a[11][11];
node operator *(const node &r) const{
node res;
memset(res.a,0,sizeof(res.a));
for(int i=1;i<=m;i++){
for(int j=1;j<=m;j++){
for(int k=1;k<=m;k++){
res.a[i][j]=(res.a[i][j]+a[i][k]*r.a[k][j]%mod)%mod;
}
}
}
return res;
}
}tr[maxn<<2];
void pp(int p){
tr[p]=tr[p<<1]*tr[p<<1|1];
}
void cal(int p,int l){
memset(tr[p].a,0,sizeof(tr[p].a));
for(int i=1;i<=m;i++){
int pos=i;
while(pos<=m&&!a[l][pos]){
tr[p].a[i][pos]=1;
pos++;
}
pos=i;
while(pos>=1&&!a[l][pos]){
tr[p].a[i][pos]=1;
pos--;
}
}
}
void bd(int l,int r,int p){
if(l==r){
cal(p,l);
return;
}int mid=l+r>>1;
bd(lson);bd(rson);
pp(p);
}
void up(int x,int l,int r,int p){
if(l==r){
cal(p,l);
return;
}int mid=l+r>>1;
if(x<=mid) up(x,lson);
else up(x,rson);
pp(p);
}
int main(){
//ios::sync_with_stdio(false);
//freopen("in","r",stdin);
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++){
scanf("%s",b[i]+1);
for(int j=1;j<=m;j++){
a[i][j]=(b[i][j]-'0');
}
}
bd(1,n,1);
while(q--){
int op,x,y;
scanf("%d%d%d",&op,&x,&y);
if(op==1){
a[x][y]^=1;
up(x,1,n,1);
}else{
printf("%lld\n",tr[1].a[x][y]);
}
}
return 0;
}

2019牛客暑期多校训练营(第二场)E 线段树维护dp转移矩阵的更多相关文章

  1. 2019牛客暑期多校训练营(第二场) H-Second Large Rectangle(单调栈)

    题意:给出由01组成的矩阵,求求全是1的次大子矩阵. 思路: 单调栈 全是1的最大子矩阵的变形,不能直接把所有的面积存起来然后排序取第二大的,因为次大子矩阵可能在最大子矩阵里面,比如: 1 0 0 1 ...

  2. 2020牛客暑期多校训练营 第二场 K Keyboard Free 积分 期望 数学

    LINK:Keyboard Free 我要是会正经的做法 就有鬼了. 我的数学水平没那么高. 三个同心圆 三个动点 求围成三角形面积的期望. 不会告辞. 其实可以\(n^2\)枚举角度然后算出面积 近 ...

  3. 2020牛客暑期多校训练营 第二场 J Just Shuffle 置换 群论

    LINK:Just Shuffle 比较怂群论 因为没怎么学过 置换也是刚理解. 这道题是 已知一个置换\(A\)求一个置换P 两个置换的关键为\(P^k=A\) 且k是一个大质数. 做法是李指导教我 ...

  4. 2020牛客暑期多校训练营 第二场 I Interval 最大流 最小割 平面图对偶图转最短路

    LINK:Interval 赛时连题目都没看. 观察n的范围不大不小 而且建图明显 考虑跑最大流最小割. 图有点稠密dinic不太行. 一个常见的trick就是对偶图转最短路. 建图有点复杂 不过建完 ...

  5. 2020牛客暑期多校训练营 第二场 C Cover the Tree 构造 贪心

    LINK:Cover the Tree 最受挫的是这道题,以为很简单 当时什么都想不清楚. 先胡了一个树的直径乱搞的贪心 一直过不去.后来意识到这类似于最经典长链剖分优化贪心的做法 然后那个是求最大值 ...

  6. 2020牛客暑期多校训练营 第二场 B Boundary 计算几何 圆 已知三点求圆心

    LINK:Boundary 计算几何确实是弱项 因为好多东西都不太会求 没有到很精通的地步. 做法很多,先说官方题解 其实就是枚举一个点 P 然后可以发现 再枚举一个点 然后再判断有多少个点在圆上显然 ...

  7. 2020牛客暑期多校训练营 第二场 A All with Pairs 字符串hash KMP

    LINK:All with Pairs 那天下午打这个东西的时候状态极差 推这个东西都推了1个多小时 (比赛是中午考试的我很困 没睡觉直接开肝果然不爽 一开始看错匹配的位置了 以为是\(1-l\)和\ ...

  8. 2019牛客暑期多校训练营(第九场) D Knapsack Cryptosystem

    题目 题意: 给你n(最大36)个数,让你从这n个数里面找出来一些数,使这些数的和等于s(题目输入),用到的数输出1,没有用到的数输出0 例如:3  4 2 3 4 输出:0 0 1 题解: 认真想一 ...

  9. 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题)

    layout: post title: 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题) author: "luowentaoaa" c ...

  10. [暴力+前缀和]2019牛客暑期多校训练营(第六场)Upgrading Technology

    链接:https://ac.nowcoder.com/acm/contest/886/J来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 262144K,其他语言52428 ...

随机推荐

  1. Docker-PS命令解析

    查看 docker 容器,必然要用到 docker ps 命令.其基本格式为: docker ps [OPTIONS] 关键在于 OPTIONS(选项): 1 常见用法 1. 最常见的用法 $ doc ...

  2. 并不对劲的复健训练-bzoj5301:loj2534:p4462 [CQOI2018]异或序列

    题目大意 给出一个序列\(a_1,...,a_n\)(\(a,n\leq 10^5\)),一个数\(k\)(\(k\leq 10^5\)),\(m\)(\(m\leq10^5\))次询问,每次询问给\ ...

  3. Centos系统修改docker默认网络参数

    刚Yum装完发现是没有网上所说的/etc/default/docker文件的,自己vim后其实也是不生效的. 因为Docker的systemd启动脚本(/usr/lib/systemd/system/ ...

  4. 进阶Java编程(7)反射机制

    反射机制 1,反射机制简介 在Java语言里面之所以会有如此多的开源技术支撑,很大的一部分是来自于Java最大的特征[反射机制].如果你不能够使用反射机制去进行项目的开发与设计,那么可以说你并未接触到 ...

  5. C# WPF集中引用图片等资源的路劲方式

    第一内部资源: pack://application:,,,/images/my.jpg 第二 外部程序资源: pack://SiteOfOrigin:,,,/images/my.jpg 需要将资源放 ...

  6. Google谷歌总部员工家庭活动

    每年Google总部都会有针对家庭的两个大活动,其中一个就是万圣节.专门针对员工孩子的.#2019Googleween 今年的Googleween分几个场地,所以每个场地很小.她爸爸只带她去了一个.我 ...

  7. JS的 delete操作符 删除对象属性

    JS如何删除对象中的某一属性 var obj={ name: 'zhagnsan', age: 19 } delete obj.name //true typeof obj.name //undefi ...

  8. openlayers加载天地图过程中遇到跨域问题

    // 采用openlayers加载天地图 var layer = new ol.layer.Tile({ source: new ol.source.XYZ({ // crossOrigin: 'An ...

  9. js把一串字符串去重(能统计出字符重复次数更佳)

    原文来自:https://juejin.im/post/5ba6e77e6fb9a05d0b14359b <script> let str = "12qwe345671dsfa2 ...

  10. Oracle中undo表空间的切换

    查看操作系统: SQL>  !cat /etc/redhat-releaseRed Hat Enterprise Linux Server release 7.4 (Maipo)查看数据库版本: ...