问题描述
  Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
  给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
  1. 找到{pi}中最小的两个数,设为papb,将papb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa + pb
  2. 重复步骤1,直到{pi}中只剩下一个数。
  在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
  本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。

  例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
  1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
  2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
  3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
  4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
  5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。

输入格式
  输入的第一行包含一个正整数nn<=100)。
  接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
输出格式
  输出用这些数构造Huffman树的总费用。
样例输入
5
5 3 8 2 9
样例输出
59
 
//动态数组的使用
 #include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
int main(){
int n,t,len,s1,ss=;
cin>>n;
vector<int> s;
for(int i = ;i < n;i++){
cin>>t;
s.push_back(t);
}
//cout<<s.size();
while(s.size()>=){
sort(s.begin(),s.end());
s1=s[]+s[];
s.erase(s.begin()+);
s.erase(s.begin());
s.push_back(s1);
ss=ss+s1;
}
cout<<ss;
return ;
}

哈夫曼树 动态数组的使用vector的更多相关文章

  1. C++哈夫曼树编码和译码的实现

    一.背景介绍: 给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的 ...

  2. 哈夫曼树;二叉树;二叉排序树(BST)

    优先队列:priority_queue<Type, Container, Functional>Type 为数据类型, Container 为保存数据的容器,Functional 为元素比 ...

  3. 哈夫曼树的构建(C语言)

    哈夫曼树的构建(C语言) 算法思路: 主要包括两部分算法,一个是在数组中找到权值最小.且无父结点两个结点位置,因为只有无父结点才能继续组成树: ​ 另一个就是根据这两个结点来修改相关结点值. 结构定义 ...

  4. [C++]哈夫曼树(最优满二叉树) / 哈夫曼编码(贪心算法)

    一 哈夫曼树 1.1 基本概念 算法思想 贪心算法(以局部最优,谋求全局最优) 适用范围 1 [(约束)可行]:它必须满足问题的约束 2 [局部最优]它是当前步骤中所有可行选择中最佳的局部选择 3 [ ...

  5. 数据结构之C语言实现哈夫曼树

    1.基本概念 a.路径和路径长度 若在一棵树中存在着一个结点序列 k1,k2,……,kj, 使得 ki是ki+1 的双亲(1<=i<j),则称此结点序列是从 k1 到 kj 的路径. 从 ...

  6. 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  7. 哈夫曼树(三)之 Java详解

    前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:htt ...

  8. 哈夫曼树(二)之 C++详解

    上一章介绍了哈夫曼树的基本概念,并通过C语言实现了哈夫曼树.本章是哈夫曼树的C++实现. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载 ...

  9. 哈夫曼树(一)之 C语言详解

    本章介绍哈夫曼树.和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若 ...

随机推荐

  1. 一个"/"引发的惨案

    今天行云流水写了一个接口,正想着写完就睡觉了,结果访问的时候一直报错404,找不到路径,我反复检查了好久,确定路径名字没写错,百思不得其解,瞬间有想砸电脑的冲动,于是准备洗洗睡了,明天再搞 洗玩脚回到 ...

  2. Redis5.x五种数据类型常见命令

    关注公众号:CoderBuff,回复"redis"获取<Redis5.x入门教程>完整版PDF. <Redis5.x入门教程>目录 第一章 · 准备工作 第 ...

  3. RTEMS进程同步机制

    互斥量 好像没有互斥量,信号量接收那儿有个图,互斥量似乎术语一类特殊的信号量. 信号量 12. Semaphore Manager 12.1. Introduction The semaphore m ...

  4. [Redis-CentOS7]Redis打开远程连接(十) Could not connect to Redis at 127.0.0.1:6379: Connection refused

    通过网络无法访问Redis redis-cli 172.16.1.111 Could not connect to Redis at 127.0.0.1:6379: Connection refuse ...

  5. light oj 1214 - Large Division 大数除法

    1214 - Large Division Given two integers, a and b, you should check whether a is divisible by b or n ...

  6. codewars--js--Write Number in Expanded Form—filters、map、reduce、forEach

    问题描述: you will be given a number and you will need to return it as a string in Expanded Form. For ex ...

  7. Java中的合并与重组(上)

    通过优锐课核心java学习笔记中,我们可以看到,码了很多专业的相关知识, 分享给大家参考学习. 虽然在Git中合并和重组是相似的,但它们具有两种不同的功能. 要保持自己的历史记录整洁或完整,这是你应该 ...

  8. 简化MVVM属性设置和修改 - .NET CORE(C#) WPF开发

    微信公众号:Dotnet9,网站:Dotnet9,问题或建议:请网站留言, 如果对您有所帮助:欢迎赞赏. 简化MVVM属性设置和修改 - .NET CORE(C#) WPF开发 阅读导航 常用类属性设 ...

  9. 浅谈centos8与centos7

    距离centos8.0(现在已经更新到8.1了)的发布已经过去几个月了,作为一个刚刚接触过几个月centos的萌新来说,本文想通过实际的操作体验来说对比一下centos8代与7代 首先,centos8 ...

  10. 原创:mysql5 还原至mysql 8.0.11数据库链接配置提示错误(修改内容有三处

    原创:mysql5 还原至mysql 8.0.11数据库链接配置提示错误改有三: a) mysql 连接jar包版修改 b)类路径修改 c)配置连接池地址修改 因版本升级,首先要修改 1:mysql- ...