问题描述
  Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。
  给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
  1. 找到{pi}中最小的两个数,设为papb,将papb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa + pb
  2. 重复步骤1,直到{pi}中只剩下一个数。
  在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
  本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。

  例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
  1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
  2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
  3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
  4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
  5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。

输入格式
  输入的第一行包含一个正整数nn<=100)。
  接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
输出格式
  输出用这些数构造Huffman树的总费用。
样例输入
5
5 3 8 2 9
样例输出
59
 
//动态数组的使用
 #include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
int main(){
int n,t,len,s1,ss=;
cin>>n;
vector<int> s;
for(int i = ;i < n;i++){
cin>>t;
s.push_back(t);
}
//cout<<s.size();
while(s.size()>=){
sort(s.begin(),s.end());
s1=s[]+s[];
s.erase(s.begin()+);
s.erase(s.begin());
s.push_back(s1);
ss=ss+s1;
}
cout<<ss;
return ;
}

哈夫曼树 动态数组的使用vector的更多相关文章

  1. C++哈夫曼树编码和译码的实现

    一.背景介绍: 给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的 ...

  2. 哈夫曼树;二叉树;二叉排序树(BST)

    优先队列:priority_queue<Type, Container, Functional>Type 为数据类型, Container 为保存数据的容器,Functional 为元素比 ...

  3. 哈夫曼树的构建(C语言)

    哈夫曼树的构建(C语言) 算法思路: 主要包括两部分算法,一个是在数组中找到权值最小.且无父结点两个结点位置,因为只有无父结点才能继续组成树: ​ 另一个就是根据这两个结点来修改相关结点值. 结构定义 ...

  4. [C++]哈夫曼树(最优满二叉树) / 哈夫曼编码(贪心算法)

    一 哈夫曼树 1.1 基本概念 算法思想 贪心算法(以局部最优,谋求全局最优) 适用范围 1 [(约束)可行]:它必须满足问题的约束 2 [局部最优]它是当前步骤中所有可行选择中最佳的局部选择 3 [ ...

  5. 数据结构之C语言实现哈夫曼树

    1.基本概念 a.路径和路径长度 若在一棵树中存在着一个结点序列 k1,k2,……,kj, 使得 ki是ki+1 的双亲(1<=i<j),则称此结点序列是从 k1 到 kj 的路径. 从 ...

  6. 数据结构图文解析之:哈夫曼树与哈夫曼编码详解及C++模板实现

    0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...

  7. 哈夫曼树(三)之 Java详解

    前面分别通过C和C++实现了哈夫曼树,本章给出哈夫曼树的java版本. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:htt ...

  8. 哈夫曼树(二)之 C++详解

    上一章介绍了哈夫曼树的基本概念,并通过C语言实现了哈夫曼树.本章是哈夫曼树的C++实现. 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载 ...

  9. 哈夫曼树(一)之 C语言详解

    本章介绍哈夫曼树.和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若 ...

随机推荐

  1. 《Python学习手册 第五版》 -第7章 字符串基础

    本章内容是关于字符串的,字符串是编程中经常遇到的问题,本章的内容不是包含所有字符串的讲解,而是针对其最基本的内容进行说明,后续的相关章节会根据需要进行扩展和说明,例如后续的第37章内容会讲解Unico ...

  2. Scala 学习(10)之「集合 」

    数组 定长数组 Array:采用()访问,而不是[],下标从 0 开始. val array1 = new Array[String](5) //创建数组 println(array1) //返回数组 ...

  3. [1天搞懂深度学习] 读书笔记 lecture I:Introduction of deep learning

    - 通常机器学习,目的是,找到一个函数,针对任何输入:语音,图片,文字,都能够自动输出正确的结果. - 而我们可以弄一个函数集合,这个集合针对同一个猫的图片的输入,可能有多种输出,比如猫,狗,猴子等, ...

  4. ELF文件之六——使用链接脚本-2个函数-data-bss-temp

    main.c int enable; ; int main() { int temp; ; } int add() { ; } elf反汇编结果如下,可以看出main函数中的栈多开了8字节,虽然局部变 ...

  5. centos6.x下使用xinetd管理rsync服务

    系统环境说明:centos6.x,centos7.x下rsync直接可由systemd管理(无需使用xinetd). [root@meinv01 ~]# rpm -qa|grep xinetd [ro ...

  6. [RHEL8]开启BBR

    # sysctl net.ipv4.tcp_congestion_control net.ipv4.tcp_congestion_control = cubic # sysctl net.ipv4.t ...

  7. 杭电-------2098 分拆素数和(c语言写)

    #include<stdio.h> #include<math.h> ] = { , }; ;//全局变量,用来标志此时已有多少个素数 int judge(int n) {// ...

  8. VFP的数据策略:高级篇

    VFP的数据策略:高级篇 引语 在“VFP中的数据策略:基础篇”一文中,我们研究了VFP应用程序中访问非VFP数据(如SQL Server)的不同机制:远程视图.SQL Passthrough.ADO ...

  9. Ubuntu Xftp 配置

    sudo apt-get updatesudo apt install openssh-serversudo apt-get install vsftpdsudo service vsftpd res ...

  10. Qps从300到1500的优化过程

    最近压测一项目,遇到的性能问题比较典型,过程记录下来,给大家做定位调优参考: 表象: 单接口负载测试,qps最高到300,响应时间200ms,应用cpu达到90%以上,8c机器,如下图,写到这里可能有 ...