CF round 623 Div.1D Tourism 题解
题目链接:https://codeforces.com/contest/1314/problem/D
大意:
\(n\) 个顶点的有向图,顶点编号为 \(1\) 到 \(n\),任意两个不同的顶点 \(A,B\),都有一条带权有向边 \(A\rightarrow B\)。
Masha想从 \(1\) 出发走 \(k\) 条边之后返回 \(1\),且不走长度为奇数的环。(某一时刻Masha在 \(v\),之后走了经过奇数条路径后回到 \(v\),这是不允许的)
问Masha走过的路径权值之和的最小值
(\(n \le 80\),\(k\le 10\),边权 \(\le 10^8\),保证k是偶数)
(不要看位置是D,这题是除了签到题外最简单的题qwq但我还是没做出来)
我首先想到的是广义矩阵乘法,即把矩阵乘法中的乘法换成加法,加法换成最小值(即 \(C_{i,j}=\min_{k=1}^n (A_{i,k}+B_{k,j})\)),这样邻接矩阵的 \(k\) 次方取 \(C_{1,1}\) 就是(伪)答案
但是这个答案是允许奇环的,所以比赛时我接下来就不知道在干嘛了
第一种思路是先染色,把点分成两部分,不允许走偶数次到达的点(黑点)和不允许走奇数次到达的点(白点),连接黑黑或白白的边权都设成 inf,这样构造的新的矩阵再 \(k\) 次方就行了。当时我一算,要至少算 \(\binom{79}{4}=1502501\) 次矩阵快速幂,每个矩阵快速幂复杂度 \(80^2\times 4=25600\),感觉十分绝望
这个思路的正解其实是把所有点随机染色成黑白,每跑一遍矩快更新一下答案。事实上染色正确的概率是 \(\dfrac 1 {512}\),跑个几千次完全没问题(果然我还没领悟随机化的精髓)
第二种思路是确定走偶数次到达的点(假设已染黑),这样所有走奇数次到达的点可以随心所欲不逾矩(只要不是黑点就行了),它们两两互不干涉,所以在确定黑点的基础上for一下就行了。这样复杂度是 \(80^5=3276800000\),不够优化,哭唧唧
这个思路的正解是事先处理一下所有的 \(A\rightarrow C \rightarrow B\) 的权值和存到数组 f[A][B] 中,然后排个序。如果要找 \(A\) 经过某一点到 \(B\) 的最短路(这个“某一点”不能是黑点),就从 f[A][B] 中找第一个不是黑点的路径。黑点最多也就5个,比找80次强多了
(代码?代码是不存在的,作者太懒了)
CF round 623 Div.1D Tourism 题解的更多相关文章
- 竞赛题解 - CF Round #524 Div.2
CF Round #524 Div.2 - 竞赛题解 不容易CF有一场下午的比赛,开心的和一个神犇一起报了名 被虐爆--前两题水过去,第三题卡了好久,第四题毫无头绪QwQ Codeforces 传送门 ...
- # Codeforces Round #529(Div.3)个人题解
Codeforces Round #529(Div.3)个人题解 前言: 闲来无事补了前天的cf,想着最近刷题有点点怠惰,就直接一场cf一场cf的刷算了,以后的题解也都会以每场的形式写出来 A. Re ...
- CF Round #551 (Div. 2) D
CF Round #551 (Div. 2) D 链接 https://codeforces.com/contest/1153/problem/D 思路 不考虑赋值和贪心,考虑排名. 设\(dp_i\ ...
- CF Round #510 (Div. 2)
前言:没想到那么快就打了第二场,题目难度比CF Round #509 (Div. 2)这场要难些,不过我依旧菜,这场更是被\(D\)题卡了,最后\(C\)题都来不及敲了..最后才\(A\)了\(3\) ...
- CF Round #600 (Div 2) 解题报告(A~E)
CF Round #600 (Div 2) 解题报告(A~E) A:Single Push 采用差分的思想,让\(b-a=c\),然后观察\(c\)序列是不是一个满足要求的序列 #include< ...
- Codeforces Round #557 (Div. 1) 简要题解
Codeforces Round #557 (Div. 1) 简要题解 codeforces A. Hide and Seek 枚举起始位置\(a\),如果\(a\)未在序列中出现,则对答案有\(2\ ...
- Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】
Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...
- cf Round#273 Div.2
题目链接,点击一下 Round#273 Div.2 ================== problem A Initial Bet ================== 很简单,打了两三场的cf第一 ...
- Codeforces Round #540 (Div. 3) 部分题解
Codeforces Round #540 (Div. 3) 题目链接:https://codeforces.com/contest/1118 题目太多啦,解释题意都花很多时间...还有事情要做,就选 ...
随机推荐
- Spring 核心功能演示
Spring 核心功能演示 Spring Framework 简称 Spring,是 Java 开发中最常用的框架,地位仅次于 Java API,就连近几年比较流行的微服务框架 SpringBoot, ...
- centos6安装lamp
1.安装Apache [root@localhost ~]# yum -y install httpd 设置开启自启动 [root@localhost ~]# chkconfig httpd on 启 ...
- SDL初始化和创建窗口
//初始化SDL2和创建一个窗口,并且将屏幕绘制成大红色 #include <iostream> extern "C" { #include <SDL.h> ...
- esp跟ebp跟踪记录
发现文字描述还是太没有快感.上几幅图,来说明这个调试过程更好.此文对于深刻理解ebp,esp是具有长远意义的 可以看到,初始情况下,ebp此时值为0012FEDC,也就是栈帧的地址,而栈顶地址esp值 ...
- windows7_下Eclipse中部署tomcat7.0进行JSP+servlet开发
环境:windows 7+EclipseJava EE IDE for Web Developers +tomcat 7.02 插件:tomcatPluginV321.zip(百度搜索下载即可) 一. ...
- GBM,XGBoost,LightGBM
GBM如何调参:https://www.analyticsvidhya.com/blog/2016/02/complete-guide-parameter-tuning-gradient-boosti ...
- 【译文连载】 理解Istio服务网格(第二章 安装)
全书目录 第一章 概述 本文目录 1.命令行工具安装 2. Kubernetes/OpenShift安装 3. Istio安装 4.示例Java微服务安装 4.1 源码概览 4.2 编译和部署cust ...
- 《古剑奇谭3》千秋戏辅助工具(前端React制作)
前言 一直身在武汉,基于众所周知的疫情原因,这个春节只能宅着. 不过其实这个春节是这些年来过得最爽的一个了. 没有鞭炮,不用四处跑,安安心心呆在家里玩玩游戏看看书写写代码,其实日子过得还是挺悠闲的. ...
- Unity酱~ 卡通渲染技术分析(一)
前面的话 unitychan是日本unity官方团队提供的一个Demo,里面有很好的卡通渲染效果,值得参考学习 上图是我整理出来的shader结构,可以看到Unity娘被拆分成了很多个小的部件,我想主 ...
- 吴恩达deepLearning.ai循环神经网络RNN学习笔记_看图就懂了!!!(理论篇)
前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - ...