【JZOJ4887】【NOIP2016提高A组集训第13场11.11】最大匹配
题目描述
mhy12345学习了二分图匹配,二分图是一种特殊的图,其中的点可以分到两个集合中,使得相同的集合中的点两两没有连边。
图的“匹配”是指这个图的一个边集,里面的边两两不存在公共端点。
匹配的大小是指该匹配有多少条边。
二分图匹配我们可以通过匈牙利算法得以在O(VE)时间复杂度内解决。
mhy12345觉得单纯的二分图匹配算法毫无难度,因此提出新的问题:
现在给你一个N个点N-1条边的连通图,希望你能够求出这个图的最大匹配以及最大匹配的数量。
两个匹配不同当且仅当存在一条边在第一个匹配中存在而在第二个匹配中不存在。
数据范围
分析与演绎
演绎直接得出树形动态规划。
设f[i]表示取i的最大匹配数,F[i]为这个情况下的方案数;
g[i]表示不取i的最大匹配数,G[i]为这个情况下的方案数。
转移方程显然。
代码
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define write(x) (cout<<(x))
#define writeln(x) (cout<<(x)<<endl)
#define ll long long
using namespace std;
const char* fin="hungary.in";
const char* fout="hungary.out";
const ll inf=0x7fffffff;
const ll maxn=100008,maxm=maxn*2,mo=1000000007;
ll t,m,n,i,j,k;
ll f[maxn],F[maxn],g[maxn],G[maxn],h[maxn],H[maxn];
ll fi[maxn],la[maxm],ne[maxm],tot=0;
void add_line(ll a,ll b){
tot++;
ne[tot]=fi[a];
la[tot]=b;
fi[a]=tot;
}
ll read(){
ll x=0;
char ch=getchar();
while (ch<'0' && ch>'9') ch=getchar();
while (ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
ll qpower(ll a,ll b){
ll c=1;
while (b){
if (b&1) c=c*a%mo;
a=a*a%mo;
b>>=1;
}
return c;
}
ll N(ll a){
return qpower(a,mo-2);
}
void dfs(ll v,ll from){
ll i,j=0,k,sum=0,times=1;
f[v]=0;
F[v]=0;
g[v]=0;
G[v]=1;
for (k=fi[v];k;k=ne[k])
if (la[k]!=from){
dfs(la[k],v);
g[v]+=h[la[k]];
G[v]=G[v]*H[la[k]]%mo;
sum+=h[la[k]];
times=times*H[la[k]]%mo;
j=1;
}
for (k=fi[v];k;k=ne[k]){
if (la[k]!=from){
if (f[v]<sum-h[la[k]]+g[la[k]]+1){
f[v]=sum-h[la[k]]+g[la[k]]+1;
F[v]=times*N(H[la[k]])%mo*G[la[k]]%mo;
}else if (f[v]==sum-h[la[k]]+g[la[k]]+1) F[v]=(F[v]+times*N(H[la[k]])%mo*G[la[k]]%mo)%mo;
}
}
if (f[v]>g[v]) h[v]=f[v],H[v]=F[v];
else if (f[v]<g[v]) h[v]=g[v],H[v]=G[v];
else h[v]=f[v],H[v]=(F[v]+G[v])%mo;
}
int main(){
freopen(fin,"r",stdin);
freopen(fout,"w",stdout);
t=read();
m=read();
while (t--){
tot=0;
memset(fi,0,sizeof(fi));
n=read();
for (i=1;i<n;i++){
j=read();
k=read();
add_line(j,k);
add_line(k,j);
}
dfs(1,0);
write(h[1]);
if (m==2) write(" "),write(H[1]);
write(endl);
}
return 0;
}
启发
写动态规划之前,一定要明确动态规划转移方程。
【JZOJ4887】【NOIP2016提高A组集训第13场11.11】最大匹配的更多相关文章
- 【NOIP2016提高A组集训第13场11.11】最大匹配
题目 mhy12345学习了二分图匹配,二分图是一种特殊的图,其中的点可以分到两个集合中,使得相同的集合中的点两两没有连边. 图的"匹配"是指这个图的一个边集,里面的边两两不存在公 ...
- 【JZOJ4886】【NOIP2016提高A组集训第13场11.11】字符串
题目描述 某日mhy12345在教同学们写helloworld,要求同学们用程序输出一个给定长度的字符串,然而发现有些人输出了一些"危险"的东西,所以mhy12345想知道对于任意 ...
- JZOJ 【NOIP2016提高A组集训第16场11.15】兔子
JZOJ [NOIP2016提高A组集训第16场11.15]兔子 题目 Description 在一片草原上有N个兔子窝,每个窝里住着一只兔子,有M条路径连接这些窝.更特殊地是,至多只有一个兔子窝有3 ...
- JZOJ 【NOIP2016提高A组集训第16场11.15】SJR的直线
JZOJ [NOIP2016提高A组集训第16场11.15]SJR的直线 题目 Description Input Output Sample Input 6 0 1 0 -5 3 0 -5 -2 2 ...
- 【JZOJ4824】【NOIP2016提高A组集训第1场10.29】配对游戏
题目描述 流行的跳棋游戏是在一个有m*n个方格的长方形棋盘上玩的.棋盘起初全部被动物或障碍物占满了.在一个方格中,'X'表示一个障碍物,一个'0'-'9'的个位数字表示一个不同种类的动物,相同的个位数 ...
- 【NOIP2016提高A组集训第4场11.1】平衡的子集
题目 夏令营有N个人,每个人的力气为M(i).请大家从这N个人中选出若干人,如果这些人可以分成两组且两组力气之和完全相等,则称为一个合法的选法,问有多少种合法的选法? 分析 如果暴力枚举每个人被分到哪 ...
- 【JZOJ4841】【NOIP2016提高A组集训第4场11.1】平衡的子集
题目描述 夏令营有N个人,每个人的力气为M(i).请大家从这N个人中选出若干人,如果这些人可以分成两组且两组力气之和完全相等,则称为一个合法的选法,问有多少种合法的选法? 数据范围 40%的数据满足: ...
- 【JZOJ4833】【NOIP2016提高A组集训第3场10.31】Mahjong
题目描述 解法 搜索. 代码 #include<stdio.h> #include<iostream> #include<string.h> #include< ...
- 【NOIP2016提高A组集训第14场11.12】随机游走
题目 YJC最近在学习图的有关知识.今天,他遇到了这么一个概念:随机游走.随机游走指每次从相邻的点中随机选一个走过去,重复这样的过程若干次.YJC很聪明,他很快就学会了怎么跑随机游走.为了检验自己是不 ...
随机推荐
- 【DM8168学习笔记3】CodSourcery GCC Tool Chain安装过程记录
eagle@eagle-desktop:~$ cd/home/eagle/desktop eagle@eagle-desktop:~/desktop$ cd./vboxshared eagle@eag ...
- js+php如何实现上传图片
近期有一些朋友,在做上传图片这一块的时候进度卡住了.有个朋友说,我已经在这个问题上浪费了一天了. 确实,对于新手而言,上传图片成了比较复杂的的一个事,今天整理了一下常用的两种方式,让新手轻松掌握上传图 ...
- Nginx与PHP工作原理
Nginx的工作原理 1.Nginx的模块与工作原理 Nginx由内核和模块组成,其中,内核的设计非常微小和简洁,完成的工作也非常简单,仅仅通过查找配置文件将客户端请求映射到一个location bl ...
- Mybatis编写初始化Dao代码
第一步:创建User实体类(POJO) package com.xu.pojo; import java.util.Date; /** * * @author 徐亮亮 * Title: User * ...
- Servlet开发总结(一)
一.Servlet简介 Servlet是sun公司提供的一门用于开发动态web资源的技术. Sun公司在其API中提供了一个servlet接口. 用户若想用发一个动态web资源(即开发一个Java程序 ...
- 跟我一起做一个vue的小项目(三)
接下来我们进行轮播的开发 安装插件,选用2.6.7的稳定版本 npm install vue-awesome-swiper@2.6.7 --save 根据其github上面的用法,我们在全局引用,在m ...
- php数据几行代码导出到excel(非插件)
<?php header("Content-type:application/vnd.ms-excel"); header("Content-Disposition ...
- stream之累加求和
1.集合中直接包含BigDecimal元素的累加 List<Integer> list = new ArrayList<>();list.add(3);list.add(7); ...
- Kotlin 委托(2)变量委托是什么、自定义变量委托
1.委托是什么? 1.1 官网示例 在每个变量委托的实现的背后,Kotlin 编译器都会生成辅助对象并委托给它. 假设委托如下, class C { var prop: Type by MyDeleg ...
- Browsersync 浏览器自动刷新
Browsersync 是一个很好用的工具,它可以实时监测文件的变动然后自动刷新浏览器,不用每次去点刷新或F5,特别在调试样式时非常有用. browsersync中文网 http://www.bro ...