【JZOJ4887】【NOIP2016提高A组集训第13场11.11】最大匹配
题目描述
mhy12345学习了二分图匹配,二分图是一种特殊的图,其中的点可以分到两个集合中,使得相同的集合中的点两两没有连边。
图的“匹配”是指这个图的一个边集,里面的边两两不存在公共端点。
匹配的大小是指该匹配有多少条边。
二分图匹配我们可以通过匈牙利算法得以在O(VE)时间复杂度内解决。
mhy12345觉得单纯的二分图匹配算法毫无难度,因此提出新的问题:
现在给你一个N个点N-1条边的连通图,希望你能够求出这个图的最大匹配以及最大匹配的数量。
两个匹配不同当且仅当存在一条边在第一个匹配中存在而在第二个匹配中不存在。
数据范围
分析与演绎
演绎直接得出树形动态规划。
设f[i]表示取i的最大匹配数,F[i]为这个情况下的方案数;
g[i]表示不取i的最大匹配数,G[i]为这个情况下的方案数。
转移方程显然。
代码
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define write(x) (cout<<(x))
#define writeln(x) (cout<<(x)<<endl)
#define ll long long
using namespace std;
const char* fin="hungary.in";
const char* fout="hungary.out";
const ll inf=0x7fffffff;
const ll maxn=100008,maxm=maxn*2,mo=1000000007;
ll t,m,n,i,j,k;
ll f[maxn],F[maxn],g[maxn],G[maxn],h[maxn],H[maxn];
ll fi[maxn],la[maxm],ne[maxm],tot=0;
void add_line(ll a,ll b){
tot++;
ne[tot]=fi[a];
la[tot]=b;
fi[a]=tot;
}
ll read(){
ll x=0;
char ch=getchar();
while (ch<'0' && ch>'9') ch=getchar();
while (ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
ll qpower(ll a,ll b){
ll c=1;
while (b){
if (b&1) c=c*a%mo;
a=a*a%mo;
b>>=1;
}
return c;
}
ll N(ll a){
return qpower(a,mo-2);
}
void dfs(ll v,ll from){
ll i,j=0,k,sum=0,times=1;
f[v]=0;
F[v]=0;
g[v]=0;
G[v]=1;
for (k=fi[v];k;k=ne[k])
if (la[k]!=from){
dfs(la[k],v);
g[v]+=h[la[k]];
G[v]=G[v]*H[la[k]]%mo;
sum+=h[la[k]];
times=times*H[la[k]]%mo;
j=1;
}
for (k=fi[v];k;k=ne[k]){
if (la[k]!=from){
if (f[v]<sum-h[la[k]]+g[la[k]]+1){
f[v]=sum-h[la[k]]+g[la[k]]+1;
F[v]=times*N(H[la[k]])%mo*G[la[k]]%mo;
}else if (f[v]==sum-h[la[k]]+g[la[k]]+1) F[v]=(F[v]+times*N(H[la[k]])%mo*G[la[k]]%mo)%mo;
}
}
if (f[v]>g[v]) h[v]=f[v],H[v]=F[v];
else if (f[v]<g[v]) h[v]=g[v],H[v]=G[v];
else h[v]=f[v],H[v]=(F[v]+G[v])%mo;
}
int main(){
freopen(fin,"r",stdin);
freopen(fout,"w",stdout);
t=read();
m=read();
while (t--){
tot=0;
memset(fi,0,sizeof(fi));
n=read();
for (i=1;i<n;i++){
j=read();
k=read();
add_line(j,k);
add_line(k,j);
}
dfs(1,0);
write(h[1]);
if (m==2) write(" "),write(H[1]);
write(endl);
}
return 0;
}
启发
写动态规划之前,一定要明确动态规划转移方程。
【JZOJ4887】【NOIP2016提高A组集训第13场11.11】最大匹配的更多相关文章
- 【NOIP2016提高A组集训第13场11.11】最大匹配
题目 mhy12345学习了二分图匹配,二分图是一种特殊的图,其中的点可以分到两个集合中,使得相同的集合中的点两两没有连边. 图的"匹配"是指这个图的一个边集,里面的边两两不存在公 ...
- 【JZOJ4886】【NOIP2016提高A组集训第13场11.11】字符串
题目描述 某日mhy12345在教同学们写helloworld,要求同学们用程序输出一个给定长度的字符串,然而发现有些人输出了一些"危险"的东西,所以mhy12345想知道对于任意 ...
- JZOJ 【NOIP2016提高A组集训第16场11.15】兔子
JZOJ [NOIP2016提高A组集训第16场11.15]兔子 题目 Description 在一片草原上有N个兔子窝,每个窝里住着一只兔子,有M条路径连接这些窝.更特殊地是,至多只有一个兔子窝有3 ...
- JZOJ 【NOIP2016提高A组集训第16场11.15】SJR的直线
JZOJ [NOIP2016提高A组集训第16场11.15]SJR的直线 题目 Description Input Output Sample Input 6 0 1 0 -5 3 0 -5 -2 2 ...
- 【JZOJ4824】【NOIP2016提高A组集训第1场10.29】配对游戏
题目描述 流行的跳棋游戏是在一个有m*n个方格的长方形棋盘上玩的.棋盘起初全部被动物或障碍物占满了.在一个方格中,'X'表示一个障碍物,一个'0'-'9'的个位数字表示一个不同种类的动物,相同的个位数 ...
- 【NOIP2016提高A组集训第4场11.1】平衡的子集
题目 夏令营有N个人,每个人的力气为M(i).请大家从这N个人中选出若干人,如果这些人可以分成两组且两组力气之和完全相等,则称为一个合法的选法,问有多少种合法的选法? 分析 如果暴力枚举每个人被分到哪 ...
- 【JZOJ4841】【NOIP2016提高A组集训第4场11.1】平衡的子集
题目描述 夏令营有N个人,每个人的力气为M(i).请大家从这N个人中选出若干人,如果这些人可以分成两组且两组力气之和完全相等,则称为一个合法的选法,问有多少种合法的选法? 数据范围 40%的数据满足: ...
- 【JZOJ4833】【NOIP2016提高A组集训第3场10.31】Mahjong
题目描述 解法 搜索. 代码 #include<stdio.h> #include<iostream> #include<string.h> #include< ...
- 【NOIP2016提高A组集训第14场11.12】随机游走
题目 YJC最近在学习图的有关知识.今天,他遇到了这么一个概念:随机游走.随机游走指每次从相邻的点中随机选一个走过去,重复这样的过程若干次.YJC很聪明,他很快就学会了怎么跑随机游走.为了检验自己是不 ...
随机推荐
- 关于开启Eureka安全Security认证后,客户端死活注册不上的问题
遇到一个问题"开启Eureka服务端的安全认证后,客户端死活注册不到Eureka上",已经尝试了以下办法,完全搞不定... 客户端出错的版本: spring-boot:2.0.3. ...
- JavaWeb-类加载器-注解-动态代理
(一)类加载器 1.什么是类加载器,作用是什么? 类加载器就加载字节码文件(.class) 2.类加载器的种类 类加载器有三种,不同类加载器加载不同的 1)BootStrap:引导类加载器:加载都是最 ...
- Luogu P1712 [NOI2016]区间(线段树)
P1712 [NOI2016]区间 题意 题目描述 在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) .现在要从中选出 \(M\) 个区间, ...
- hadoop面试题及答案解析
1.(Datanode)程序负责HDFS数据存储. 2.HDFS中的block默认保存(3份). 3.(TaskTracker)程序通常与NameNode在一个节点启动. 分析:hadoop集群是基于 ...
- linux在线用户管理
LINUX是个多用户系统,一旦连接到网络中,它可以同时为多个登录用户提供服务.系统管理员可以随时了解系统中有那些用户,用户都在进行什么操作. 1.查看该系统在线用户 系统管理员若想知道某一时刻用户的行 ...
- 解决驱动版本不对应导致的UnsupportedClassVersionError: com/mysql/jdbc/Driver : Unsupported major.minor version 52.0
org.springframework.web.util.NestedServletException: Handler processing failed; nested exception is ...
- SpringCloud微服务实战一:Spring Cloud Eureka 服务发现与注册中心(高可用实列为两个注册中心)
微服务架构: 微服务架构的核心思想是,一个应用是由多个小的.相互独立的.微服务组成,这些服务运行在自己的进程中,开发和发布都没有依赖.不同服务通过一些轻量级交互机制来通信,例如 RPC.HTTP 等, ...
- 2019.7.27 NOIP模拟测试9 反思总结
先来整理题目 T1题目大意:给出n个数字和一个质数作为模数,一个变量x初始值为1.进行m次操作,每次让x随机乘上n个数中的一个,问m次操作以后x的期望值. 答案一定可以用分数表示,输出分子乘分母逆元的 ...
- golang之vscode环境配置
go语言开发,选择vscode作为IDE工具也是一个不错的选择,毕竟goland收费,老是破解也挺麻烦,除了这点,不过说实话挺好用的.vscode的话相对来说就毕竟原始,适合初学者. 1.vscode ...
- 2018-11-1-WPF-Main-thread-gets-a-deadlock-when-stylus-input-thread-is-waiting-for-the-window-to-clos...
title author date CreateTime categories WPF Main thread gets a deadlock when stylus input thread is ...