UVA - 10480 Sabotage (Dinic)
The regime of a small but wealthy dictatorship has been abruptly overthrown by an unexpected rebel-
lion. Because of the enormous disturbances this is causing in world economy, an imperialist military
super power has decided to invade the country and reinstall the old regime.
For this operation to be successful, communication between the capital and the largest city must
be completely cut. This is a difficult task, since all cities in the country are connected by a computer
network using the Internet Protocol, which allows messages to take any path through the network.
Because of this, the network must be completely split in two parts, with the capital in one part and
the largest city in the other, and with no connections between the parts.
There are large differences in the costs of sabotaging different connections, since some are much
more easy to get to than others.
Write a program that, given a network specification and the costs of sabotaging each connection,
determines which connections to cut in order to separate the capital and the largest city to the lowest
possible cost.
Input
Input file contains several sets of input. The description of each set is given below.
The first line of each set has two integers, separated by a space: First one the number of cities, n in
the network, which is at most 50. The second one is the total number of connections, m, at most 500.
The following m lines specify the connections. Each line has three parts separated by spaces: The
first two are the cities tied together by that connection (numbers in the range 1 − n). Then follows the
cost of cutting the connection (an integer in the range 1 to 40000000). Each pair of cites can appear
at most once in this list.
Input is terminated by a case where values of n and m are zero. This case should not be processed.
For every input set the capital is city number 1, and the largest city is number 2.
Output
For each set of input you should produce several lines of output. The description of output for each set
of input is given below:
The output for each set should be the pairs of cities (i.e. numbers) between which the connection
should be cut (in any order), each pair on one line with the numbers separated by a space. If there is
more than one solution, any one of them will do.
Print a blank line after the output for each set of input.
题意:
求图的最小割的可能方案。
思路:
暴力枚举每一条边,边的全值是否是w,判断删除之后最大流是否会减少w,如果会的话,那就真的删了它,否则还原图。
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime> #define fuck(x) cerr<<#x<<" = "<<x<<endl;
#define debug(a, x) cerr<<#a<<"["<<x<<"] = "<<a[x]<<endl;
#define ls (t<<1)
#define rs ((t<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 0x3f3f3f3f;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-); int Head[maxn],cnt;
struct edge{
int Next,u,v;
int w;
}e[maxm];
void add_edge(int u,int v,int w){
e[cnt].Next=Head[u];
e[cnt].v=v;
e[cnt].u=u;
e[cnt].w=w;
Head[u]=cnt++;
}
int n,m; int D_vis[maxn],D_num[maxn];
int source,meeting;
bool bfs()
{
memset(D_vis,,sizeof(D_vis));
for(int i=;i<=n;i++){//注意要覆盖所有点
D_num[i]=Head[i];
}
D_vis[source]=;
queue<int>q;
q.push(source);
int r=;
while(!q.empty()){
int u=q.front();
q.pop();
int k=Head[u];
while(k!=-){
if(!D_vis[e[k].v]&&e[k].w){
D_vis[e[k].v]=D_vis[u]+;
q.push(e[k].v);
}
k=e[k].Next;
}
}
return D_vis[meeting];
}
int dfs(int u,int f)
{
if(u==meeting){return f;}
int &k=D_num[u];
while(k!=-){
if(D_vis[e[k].v]==D_vis[u]+&&e[k].w){
int d=dfs(e[k].v,min(f,e[k].w));
if(d>){
e[k].w-=d;
e[k^].w+=d;
return d;
}
}
k=e[k].Next;
}
return ;
}
int Dinic()
{
int ans=;
while(bfs()){
int f;
while((f=dfs(source,inf))>){
ans+=f;
}
}
return ans;
} int main() {
// ios::sync_with_stdio(false);
// freopen("in.txt", "r", stdin);
while (scanf("%d%d",&n,&m)!=EOF&&n){
memset(Head,-,sizeof(Head));
cnt=;
source=;meeting=;
for(int i=;i<=m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add_edge(x,y,z);
add_edge(y,x,z);
} int tot = Dinic();
for(int j=;j<cnt;j+=){
e[j].w=e[j^].w=(e[j].w+e[j^].w)/;
} for(int i=;i<cnt;i+=){
int w = e[i].w;
e[i].w=e[i^].w=;
int tmp = Dinic(); // fuck(tmp)
for(int j=;j<cnt;j+=){
e[j].w=e[j^].w=(e[j].w+e[j^].w)/;
}
if(w==tot - tmp){
printf("%d %d\n",e[i].u,e[i].v);
tot=tmp;
}
else e[i].w=e[i^].w=w; if(tot<=){ break;} }
printf("\n");
} return ;
}
看了网上的题解,发现了更好的方案。
求出最大流之后,图上的点已经被分为了两部分,连接两个部分的边就是一种可能的方案。
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime> #define fuck(x) cerr<<#x<<" = "<<x<<endl;
#define debug(a, x) cerr<<#a<<"["<<x<<"] = "<<a[x]<<endl;
#define ls (t<<1)
#define rs ((t<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 0x3f3f3f3f;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-); int Head[maxn],cnt;
struct edge{
int Next,u,v;
int w;
}e[maxm];
void add_edge(int u,int v,int w){
e[cnt].Next=Head[u];
e[cnt].v=v;
e[cnt].u=u;
e[cnt].w=w;
Head[u]=cnt++;
}
int n,m; int D_vis[maxn],D_num[maxn];
int source,meeting;
bool bfs()
{
memset(D_vis,,sizeof(D_vis));
for(int i=;i<=n;i++){//注意要覆盖所有点
D_num[i]=Head[i];
}
D_vis[source]=;
queue<int>q;
q.push(source);
int r=;
while(!q.empty()){
int u=q.front();
q.pop();
int k=Head[u];
while(k!=-){
if(!D_vis[e[k].v]&&e[k].w){
D_vis[e[k].v]=D_vis[u]+;
q.push(e[k].v);
}
k=e[k].Next;
}
}
return D_vis[meeting];
}
int dfs(int u,int f)
{
if(u==meeting){return f;}
int &k=D_num[u];
while(k!=-){
if(D_vis[e[k].v]==D_vis[u]+&&e[k].w){
int d=dfs(e[k].v,min(f,e[k].w));
if(d>){
e[k].w-=d;
e[k^].w+=d;
return d;
}
}
k=e[k].Next;
}
return ;
}
int Dinic()
{
int ans=;
while(bfs()){
int f;
while((f=dfs(source,inf))>){
ans+=f;
}
}
return ans;
} int main() {
// ios::sync_with_stdio(false);
// freopen("in.txt", "r", stdin);
while (scanf("%d%d",&n,&m)!=EOF&&n){
memset(Head,-,sizeof(Head));
cnt=;
source=;meeting=;
for(int i=;i<=m;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add_edge(x,y,z);
add_edge(y,x,z);
}
Dinic();
bfs();
for(int i=;i<=n;i++){
D_vis[i]=min(D_vis[i],);
}
for(int i=;i<cnt;i+=){
if(D_vis[e[i].u]!=D_vis[e[i].v]){
printf("%d %d\n",e[i].u,e[i].v);
}
}
printf("\n");
}
return ;
}
UVA - 10480 Sabotage (Dinic)的更多相关文章
- UVA 10480 Sabotage (网络流,最大流,最小割)
UVA 10480 Sabotage (网络流,最大流,最小割) Description The regime of a small but wealthy dictatorship has been ...
- UVA - 10480 Sabotage 最小割,输出割法
UVA - 10480 Sabotage 题意:现在有n个城市,m条路,现在要把整个图分成2部分,编号1,2的城市分成在一部分中,拆开每条路都需要花费,现在问达成目标的花费最少要隔开那几条路. 题解: ...
- uva 725 Division(除法)暴力法!
uva 725 Division(除法) A - 暴力求解 Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & ...
- 混合欧拉回路的判断(Dinic)
POJ1637 Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7483 Accepte ...
- UVA 11294 Wedding(2-sat)
2-sat.不错的一道题,学到了不少. 需要注意这么几点: 1.题目中描述的是有n对夫妇,其中(n-1)对是来为余下的一对办婚礼的,所以新娘只有一位. 2.2-sat问题是根据必然性建边,比如说A与B ...
- Uva 10480 Sabotage 最大流
表示自从学了网络流,就基本上是一直用dinic 这个题一看就是用最大流,作为常识,两个点之间的最大流等于最小割 但是这个题需要输出割边,然后我就不会了,dinic判流量我觉得也可做,但是一直wa 然后 ...
- P2763 试题库问题(dinic)
P2763 试题库问题 dinic 搞个虚拟源点和汇点,瞎建建边就好辣. 偷张图↓↓ 如果没满流就是无解辣 输出方案咋办呢? 枚举每种类型,蓝后枚举它们的边 如果该边被使用了(通过判断反向边的流量), ...
- UVa 1393 - Highways(数论)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- 【UVa】Jump(dp)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
随机推荐
- RDS 5.7三节点企业版时代的数据一致性解决方案
上篇我们看到了在MySQL主备模式下,我们在数据一致性上做了不少事情,但解决方案都有一定的局限性,适合部分场景或者解决不彻底的问题.随着以Google Spanner以及Amazon Aruora 为 ...
- JavaScript学习之setTimeout
<JavaScript权威指南>第四版中说“window对象方法setTimeout()用来安排一个JavaScript的代码段在将来的某个指定时间运行”. setTimeout(foo, ...
- [Java]ITOO初步了解 标签: javajbosstomcat 2016-05-29 21:14 3367人阅读 评论(34)
开始接触Java的ITOO了,这两天在搭环境,结果发现,哇,好多没接触过的东西,先写篇博客来熟悉一下这些工具. JBoss 基于Tomcat内核,青胜于蓝 Tomcat 服务器是一个免费的开放 ...
- 实现一个简易的promise
//promise里面只有三个状态,且三个状态的转换形式有两种 //由pending转换为fulfilled,由pending转换为rejected //Promise的构造函数参数是一个函数,函数的 ...
- ELK之开心小爬爬
1.开心小爬爬 在爬取之前需要先安装requests模块和BeautifulSoup这两个模块 ''' https://www.autohome.com.cn/all/ 爬取图片和链接 写入数据库里边 ...
- day7_python之面向对象高级-反射
反射:通过字符串去找到真实的属性,然后去进行操作 python面向对象中的反射:通过字符串的形式操作对象相关的属性.python中的一切事物都是对象(都可以使用反射) 1.两种方法访问对象的属性 cl ...
- iptables 规则(Rules)
iptables的每一条规则(rule),都是由两部分组成的,第一部分包含一或多个「过滤条件」其作用是检查包是否符合处理条件(所有条件都必须成立才算数) :第而部分称为「目标」,用於決定如何处置符合条 ...
- 受控组件 & 非受控组件
在 React 中表单组件可分为两类,受控与非受控组件. 一. 受控组件 设置了 value 的 <input> 是一个受控组件. 对于受控的 <input>,渲染出来的 HT ...
- js判断浏览设备是 手机端,电脑端还是平板端
console.log(navigator.userAgent); var os = function() { var ua = navigator.userAgent, isWindowsPhone ...
- H3C 802.11无线网络的介质访问控制