题目:

《Generating Question-Answer Hierarchies》

作者:

Kalpesh Krishna & Mohit Iyyer

What:

1.SQUASH(specificity-controlled Question-Answer Hierarchies)

2.将输入文本转化成为具有一般、具体标签的层级问答对(自上而下的树形结构),用户可以点击一般问题进而展开得到具体的问题。

3.用于解决SQUASH的流水线系统以及用于评估它的众包方法

HOW:

1.问题分类:将问题分为三个粗糙的标签:GENERAL、SPECIFIC、YES-NO,根据问题的特殊性对SQuAD、QuAC和CoQA 中的问题进行分类。不满足任何模板或规则的问题,手动标注1000条数据用CNN分类,最终将所有问题都运行了基于规则的方法,并将分类器应用于规则未涵盖的问题。

2.生成QA对

将段落中的每个句子作为潜在的答案范围,以及所有实体和数字(作为具体问题的答案)

手动删除一些笼统的问题

使用两层的biL-STM编码器和单层的LSTM解码器来生成问题,将解码器的特殊性级别设置为“一般”,“具体”和“是-否”。每个答案范围生成十三个候选问题。

3.生成有层次的QA对

为每一个具体问题泛化一个父问题,使每个一般问题的预测答案与预测答案的重叠(词级精度)最大化。如果没有与特定问题的答案重叠的一般问题的答案,将其映射到最接近的一般问题(要求其答案在特定问题的答案之前)。

4.模型评估

生成问题评估:使用众包实验在QuAC开发集的文档上评估了SQUASH流程

结构正确性评估

5.缺点:

数据集存在缺陷、信息冗余、缺乏常识性知识、对于一个段落生成了多个QA对

阅读过程中产生的疑问:

  1. 为什么使用top-10抽样方法?

  2. 问题是如何生成的?

  3. 为什么要以每个段落为一个范围进行问题的生成?若是用很多段论述同一个问题要如何解决?

论文阅读笔记:《Generating Question-Answer Hierarchies》的更多相关文章

  1. 《MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment》论文阅读笔记

    出处:2018 AAAI SourceCode:https://github.com/salu133445/musegan abstract: (写得不错 值得借鉴)重点阐述了生成音乐和生成图片,视频 ...

  2. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

  3. 生成对抗网络(Generative Adversarial Networks,GAN)初探

    1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...

  4. 生成对抗网络(Generative Adversarial Networks, GAN)

      生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法之一.   GAN 主要包括了两个部分,即 ...

  5. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  6. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  7. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

  8. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  9. SalGAN: Visual saliency prediction with generative adversarial networks

    SalGAN: Visual saliency prediction with generative adversarial networks 2017-03-17 摘要:本文引入了对抗网络的对抗训练 ...

  10. Generative Adversarial Networks,gan论文的畅想

    前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...

随机推荐

  1. Invoke-Obfuscation混淆ps文件绕过Windows_Defender

    前提 powershell只能针对win7之后的系统,之前的win操作系统默认没有安装powershell. 所在目录:C:\Windows\System32\WindowsPowerShell\v1 ...

  2. 创建GitHub(注册、创建仓库)

    说明: 首先,你需要注册一个 github 账号,最好取一个有意义的名字,比如姓名全拼,昵称全拼,如果被占用,可以加上有意义的数字. 本文中假设用户名为 chenqiufei 1. 注册账号 地址: ...

  3. RK3288 GPIO控制

    参考: https://blog.csdn.net/kris_fei/article/details/69553422

  4. sort -n

    输入如下测试数据:  当按照第一列排列时是正确的:  但按照第二列排序时,喵喵喵???怎么跟说好的不一样啊!!!为什么gugu的50会排在最后?  其实是因为默认是按照第二列的第一个字符来比较的,若想 ...

  5. Java中的LinkedHashSet

  6. 【转】 MySQL主从(Master-Slave)复制

    首先声明:此文是在失去U盘极度郁闷的时候写的,有些零散,估计也有错误.欢迎大家指出 MYSQL服务器复制配置   这是根据我之前看的MYSQL复制的文档然后自己亲自实验的过程.配置的功能比较简单. 环 ...

  7. OpenLayers绘制图形

    OpenLayers绘制图形   OpenLayers的显示构成由外向内为: ol.Map:地图对象. ol.layer.Vector:图层对象layer.Map含有多个layer,最终的显示效果是由 ...

  8. Java学习之DOS基础

    Dos命令行dir:列出当前目录下的文件和文件夹md :创建目录rd :删除目录cd :进入指定目录cd..:退回到上一级目录cd/:退回到根目录del:删除文件exit:退出dos命令行 进入dos ...

  9. [转] JPA 2.0 with EclipseLink - 教程

    原文: http://www.vogella.com/articles/JavaPersistenceAPI/article.html Lars Vogel Version 2.2 Copyright ...

  10. Elasticsearch介绍和安装与使用

    转载:https://blog.csdn.net/weixin_42633131/article/details/82902812 1.Elasticsearch介绍和安装 1.1.简介1.1.1.E ...