论文阅读笔记:《Generating Question-Answer Hierarchies》
题目:
《Generating Question-Answer Hierarchies》
作者:
Kalpesh Krishna & Mohit Iyyer
What:
1.SQUASH(specificity-controlled Question-Answer Hierarchies)
2.将输入文本转化成为具有一般、具体标签的层级问答对(自上而下的树形结构),用户可以点击一般问题进而展开得到具体的问题。
3.用于解决SQUASH的流水线系统以及用于评估它的众包方法
HOW:
1.问题分类:将问题分为三个粗糙的标签:GENERAL、SPECIFIC、YES-NO,根据问题的特殊性对SQuAD、QuAC和CoQA 中的问题进行分类。不满足任何模板或规则的问题,手动标注1000条数据用CNN分类,最终将所有问题都运行了基于规则的方法,并将分类器应用于规则未涵盖的问题。
2.生成QA对
将段落中的每个句子作为潜在的答案范围,以及所有实体和数字(作为具体问题的答案)
手动删除一些笼统的问题
使用两层的biL-STM编码器和单层的LSTM解码器来生成问题,将解码器的特殊性级别设置为“一般”,“具体”和“是-否”。每个答案范围生成十三个候选问题。
3.生成有层次的QA对
为每一个具体问题泛化一个父问题,使每个一般问题的预测答案与预测答案的重叠(词级精度)最大化。如果没有与特定问题的答案重叠的一般问题的答案,将其映射到最接近的一般问题(要求其答案在特定问题的答案之前)。
4.模型评估
生成问题评估:使用众包实验在QuAC开发集的文档上评估了SQUASH流程
结构正确性评估
5.缺点:
数据集存在缺陷、信息冗余、缺乏常识性知识、对于一个段落生成了多个QA对
阅读过程中产生的疑问:
为什么使用top-10抽样方法?
问题是如何生成的?
为什么要以每个段落为一个范围进行问题的生成?若是用很多段论述同一个问题要如何解决?
论文阅读笔记:《Generating Question-Answer Hierarchies》的更多相关文章
- 《MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment》论文阅读笔记
出处:2018 AAAI SourceCode:https://github.com/salu133445/musegan abstract: (写得不错 值得借鉴)重点阐述了生成音乐和生成图片,视频 ...
- (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!
Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...
- 生成对抗网络(Generative Adversarial Networks,GAN)初探
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...
- 生成对抗网络(Generative Adversarial Networks, GAN)
生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法之一. GAN 主要包括了两个部分,即 ...
- StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 本文将利 ...
- 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks
Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...
- 《Self-Attention Generative Adversarial Networks》里的注意力计算
前天看了 criss-cross 里的注意力模型 仔细理解了 在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...
- Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection
Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11 19:47:46 CVPR 20 ...
- SalGAN: Visual saliency prediction with generative adversarial networks
SalGAN: Visual saliency prediction with generative adversarial networks 2017-03-17 摘要:本文引入了对抗网络的对抗训练 ...
- Generative Adversarial Networks,gan论文的畅想
前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...
随机推荐
- 1005 -- I Think I Need a Houseboat
I Think I Need a Houseboat Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 105186 Acc ...
- Codeforces Round #556 CF1149D Abandoning Roads
这道题并不简单,要得出几个结论之后才可以做.首先就是根据Kruskal求最小生成树的过程,短边是首选的,那么对于这道题也是,我们先做一次直选短边的最小生成树这样会形成多个联通块,这些联通块内部由短边相 ...
- 创建win32 dll 空项目
动态库,多字节 win32 空项目 添加导出头文件 类 导入: #pragma once #ifndef IP_CLASS_DLL_H #define IP_CLASS_DLL_H #pragma ...
- Gabor滤波器的理解
搬以前写的博客[2014-02-28 20:03] 关于Gabor滤波器是如何提取出特征点,这个过程真是煎熬.看各种文章,结合百度.文章内部的分析才有一点点明白. Gabor滤波器究竟是什么? 很 ...
- mongoose 常用数据库操作 更新
更新 Model.update(conditions, update, [options], [callback]) db.js var mongoose = require('mongoose'); ...
- hive之基本架构
什么是Hive hive是建立在Hadoop体系架构上的一层SQL抽象,使得数据相关人员是用他们最为熟悉的SQL语言就可以进行海量的数据的处理.分析和统计工作,而不是必须掌握JAVA等变成语言和具备开 ...
- 开启.NET Core 3时代,DevExpress v19.2.5带你全新启航
DevExpress Universal Subscription(又名DevExpress宇宙版或DXperience Universal Suite)是全球使用广泛的.NET用户界面控件套包,De ...
- Kafka速览
一.基本结构 三台机器组成的Kafka集群,每台机器启动一个Kafka进程,即Broker 向broker发送消息的客户端是Producer,拉取消息的客户端是Consumer Producer和Co ...
- python 爬取头条视频
知识点总结 1. 利用webdriver 模拟浏览器访问 from selenium import webdriver 2.import requests 3. from bs4 import Bea ...
- 【LeetCode 23】合并K个排序链表
题目链接 [题解] 会归并排序吧? 就把这K个链表当成是K个数字就好. 然后做归并排序. 因为归并排序的时候本来就会有这么一个过程. [l..mid]和[mid+1..r]这两段区间都是有序的了已经. ...