Sklearn,TensorFlow,keras模型保存与读取
一、sklearn模型保存与读取
1、保存
from sklearn.externals import joblib
from sklearn import svm
X = [[0, 0], [1, 1]]
y = [0, 1]
clf = svm.SVC()
clf.fit(X, y)
joblib.dump(clf, "train_model.m")
2、读取
clf = joblib.load("train_model.m")
clf.predit([0,0]) #此处test_X为特征集
二、TensorFlow模型保存与读取(该方式tensorflow只能保存变量而不是保存整个网络,所以在提取模型时,我们还需要重新第一网络结构。)
1、保存
import tensorflow as tf
import numpy as np W = tf.Variable([[1,1,1],[2,2,2]],dtype = tf.float32,name='w')
b = tf.Variable([[0,1,2]],dtype = tf.float32,name='b') init = tf.initialize_all_variables()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
save_path = saver.save(sess,"save/model.ckpt")
2、加载
import tensorflow as tf
import numpy as np W = tf.Variable(tf.truncated_normal(shape=(2,3)),dtype = tf.float32,name='w')
b = tf.Variable(tf.truncated_normal(shape=(1,3)),dtype = tf.float32,name='b') saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess,"save/model.ckpt")
三、TensorFlow模型保存与读取(该方式tensorflow保存整个网络)
1、保存
import tensorflow as tf # First, you design your mathematical operations
# We are the default graph scope # Let's design a variable
v1 = tf.Variable(1. , name="v1")
v2 = tf.Variable(2. , name="v2")
# Let's design an operation
a = tf.add(v1, v2) # Let's create a Saver object
# By default, the Saver handles every Variables related to the default graph
all_saver = tf.train.Saver()
# But you can precise which vars you want to save under which name
v2_saver = tf.train.Saver({"v2": v2}) # By default the Session handles the default graph and all its included variables
with tf.Session() as sess:
# Init v and v2
sess.run(tf.global_variables_initializer())
# Now v1 holds the value 1.0 and v2 holds the value 2.0
# We can now save all those values
all_saver.save(sess, 'data.chkp')
# or saves only v2
v2_saver.save(sess, 'data-v2.chkp')
模型的权重是保存在 .chkp 文件中,模型的图是保存在 .chkp.meta 文件中。
2、加载
import tensorflow as tf # Let's laod a previous meta graph in the current graph in use: usually the default graph
# This actions returns a Saver
saver = tf.train.import_meta_graph('results/model.ckpt-1000.meta') # We can now access the default graph where all our metadata has been loaded
graph = tf.get_default_graph() # Finally we can retrieve tensors, operations, etc.
global_step_tensor = graph.get_tensor_by_name('loss/global_step:0')
train_op = graph.get_operation_by_name('loss/train_op')
hyperparameters = tf.get_collection('hyperparameters') 恢复权重 请记住,在实际的环境中,真实的权重只能存在于一个会话中。也就是说,restore 这个操作必须在一个会话中启动,然后将数据权重导入到图中。理解恢复操作的最好方法是将它简单的看做是一种数据初始化操作。
with tf.Session() as sess:
# To initialize values with saved data
saver.restore(sess, 'results/model.ckpt-1000-00000-of-00001')
print(sess.run(global_step_tensor)) # returns 1000
四、keras模型保存和加载
model.save('my_model.h5')
model = load_model('my_model.h5')
Sklearn,TensorFlow,keras模型保存与读取的更多相关文章
- keras模型保存和权重保存
模型保存和读取(包括权重): model.save('./model.h5') from keras import models model = models.load_model(./model.h ...
- [MISS静IOS开发原创文摘]-AppDelegate存储全局变量和 NSUserDefaults standardUserDefaults 通过模型保存和读取数据,存储自定义的对象
由于app开发的需求,需要从api接口获得json格式数据并保存临时的 app的主题颜色 和 相关url 方案有很多种: 1, 通过AppDelegate保存为全局变量,再获取 2,使用NSUSerD ...
- 10 Tensorflow模型保存与读取
我们的模型训练出来想给别人用,或者是我今天训练不完,明天想接着训练,怎么办?这就需要模型的保存与读取.看代码: import tensorflow as tf import numpy as np i ...
- 『TensorFlow』模型保存和载入方法汇总
『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...
- (六) Keras 模型保存和RNN简单应用
视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 RNN用于图 ...
- TensorFlow的模型保存与加载
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf #tensorboard --logdir=&qu ...
- Pytorch model saving and loading 模型保存和读取
It is really useful to save and reload the model and its parameters during or after training in deep ...
- keras中的模型保存和加载
tensorflow中的模型常常是protobuf格式,这种格式既可以是二进制也可以是文本.keras模型保存和加载与tensorflow不同,keras中的模型保存和加载往往是保存成hdf5格式. ...
- Python之TensorFlow的模型训练保存与加载-3
一.TensorFlow的模型保存和加载,使我们在训练和使用时的一种常用方式.我们把训练好的模型通过二次加载训练,或者独立加载模型训练.这基本上都是比较常用的方式. 二.模型的保存与加载类型有2种 1 ...
随机推荐
- cakephp跳转到指定的错误页面
第一步:修改core.php 第二步:创建AppExceptionRender.php文件 参考:https://blog.jordanhopfner.com/2012/09/11/custom-40 ...
- easyui combogrid 下拉框 智能输入
1. 后台代码 using System;using System.Collections;using System.Collections.Generic;using System.Linq;usi ...
- JavaScript面向对象编程小游戏---贪吃蛇
1 面向对象编程思想在程序项目中有着非常明显的优势: 1- 1 代码可读性高.由于继承的存在,即使改变需求,那么维护也只是在局部模块 1- 2 维护非常方便并且成本较低. 2 这个demo是采用了 ...
- Hadoop中Writable类
1.Writable简单介绍 在前面的博客中,经常出现IntWritable,ByteWritable.....光从字面上,就可以看出,给人的感觉是基本数据类型 和 序列化!在Hadoop中自带的or ...
- Git & TortoiseGit
http://www.git-scm.com/download/ http://download.tortoisegit.org/ https://help.github.com/articles/g ...
- sql语言的一大类 DML 数据的操纵语言
-DML(insert,update,delete) 1.插入数据insert into 表名(列,列...)values(值,值...)//当插入的数据与表格一一对应时,列可以省略insert in ...
- Alpha冲刺(四)
Information: 队名:彳艮彳亍团队 组长博客:戳我进入 作业博客:班级博客本次作业的链接 Details: 组员1(组长)柯奇豪 过去两天完成了哪些任务 文章基本的存储.列表生成显示 展示G ...
- 深入理解java虚拟机(三)对象回收判断算法以及死亡过程
在堆里面存放着Java几乎所有的对象实例,垃圾收集器要进行垃圾回收,要做的第一步便是找出那些对象是需要回收的. 怎么判断对象是否需要回收? 常用的方法有两种. 1.引用计数算法.为每一个对象添加一个引 ...
- kafka的api操作(官网http://kafka.apache.org/documentation/#producerapi)
Kafka API 简单用法 本篇会用到以下依赖:(本人包和这个不同,去maven里查找) <dependency><groupId>org.apache.kafka</ ...
- windows7开机后,罗技k380无法自动连接解决办法
问题描述: windows7开机后,罗技k380无法自动连接,必须删除设备后重新发现才能正常连接. 解决办法: 是因为笔记本电脑的蓝牙设置问题.按如下设置即可解决. [Bluetooth设置]-[允许 ...