引言

本文主要讲述JVM中几种常见的垃圾回收算法和相关的垃圾回收器,以及常见的和GC相关的性能调优参数。

GC Roots

我们先来了解一下在Java中是如何判断一个对象的生死的,有些语言比如Python是采用引用计数来统计的,但是这种做法可能会遇见循环引用的问题,在Java以及C#等语言中是采用GC Roots来解决这个问题。如果一个对象和GC Roots之间没有链接,那么这个对象也可以被视作是一个可回收的对象。

Java中可以被作为GC Roots中的对象有:

  1. 虚拟机栈中的引用的对象。
  2. 方法区中的类静态属性引用的对象。
  3. 方法区中的常量引用的对象。
  4. 本地方法栈(jni)即一般说的Native的引用对象。

垃圾收集算法

标记-清除

标记-清除算法将垃圾回收分为两个阶段:标记阶段和清除阶段。在标记阶段首先通过根节点,标记所有从根节点开始的对象,未被标记的对象就是未被引用的垃圾对象。然后,在清除阶段,清除所有未被标记的对象。标记清除算法带来的一个问题是会存在大量的空间碎片,因为回收后的空间是不连续的,这样给大对象分配内存的时候可能会提前触发full gc。

标记清除

复制算法

将现有的内存空间分为两快,每次只使用其中一块,在垃圾回收时将正在使用的内存中的存活对象复制到未被使用的内存块中,之后,清除正在使用的内存块中的所有对象,交换两个内存的角色,完成垃圾回收。

复制算法

现在的商业虚拟机都采用这种收集算法来回收新生代,IBM研究表明新生代中的对象98%是朝夕生死的,所以并不需要按照1:1的比例划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中的一块Survivor。当回收时,将Eden和Survivor中还存活着的对象一次性地拷贝到另外一个Survivor空间上,最后清理掉Eden和刚才用过的Survivor的空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1(可以通过-SurvivorRattio来配置),也就是每次新生代中可用内存空间为整个新生代容量的90%,只有10%的内存会被“浪费”。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保。

标记-整理

复制算法的高效性是建立在存活对象少、垃圾对象多的前提下的。这种情况在新生代经常发生,但是在老年代更常见的情况是大部分对象都是存活对象。如果依然使用复制算法,由于存活的对象较多,复制的成本也将很高。

标记整理

标记-整理算法是一种老年代的回收算法,它在标记-清除算法的基础上做了一些优化。首先也需要从根节点开始对所有可达对象做一次标记,但之后,它并不简单地清理未标记的对象,而是将所有的存活对象压缩到内存的一端。之后,清理边界外所有的空间。这种方法既避免了碎片的产生,又不需要两块相同的内存空间,因此,其性价比比较高。

分代收集算法

当前商业虚拟机的垃圾收集都采用“分代收集”(GenerationalCollection)算法,这种算法并没有什么新的思想,只是根据对象的存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记-清理”或“标记-整理”算法来进行回收。

增量算法

增量算法的基本思想是,如果一次性将所有的垃圾进行处理,需要造成系统长时间的停顿,那么就可以让垃圾收集线程和应用程序线程交替执行。每次,垃圾收集线程只收集一小片区域的内存空间,接着切换到应用程序线程。依次反复,直到垃圾收集完成。使用这种方式,由于在垃圾回收过程中,间断性地还执行了应用程序代码,所以能减少系统的停顿时间。但是,因为线程切换和上下文转换的消耗,会使得垃圾回收的总体成本上升,造成系统吞吐量的下降。

垃圾回收器

如果说垃圾收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。下图展示了7种作用于不同分代的收集器,其中用于回收新生代的收集器包括Serial、PraNew、Parallel Scavenge,回收老年代的收集器包括Serial Old、Parallel Old、CMS,还有用于回收整个Java堆的G1收集器。不同收集器之间的连线表示它们可以搭配使用。

Serial收集器

Serial收集器是最古老的单线程的收集器,它的缺点是当Serial收集器想进行垃圾回收的时候,必须暂停用户的所有进程,即stop the world。到现在为止,它依然是虚拟机运行在client模式下的默认新生代收集器,与其他收集器相比,对于限定在单个CPU的运行环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾回收自然可以获得最高的单线程收集效率。

Serial Old收集器

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用”标记-整理“算法。这个收集器的主要意义也是被Client模式下的虚拟机使用。在Server模式下,它主要还有两大用途:一个是在JDK1.5及以前的版本中与Parallel Scanvenge收集器搭配使用,另外一个就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure的时候使用。

通过指定-UseSerialGC参数,使用Serial + Serial Old的串行收集器组合进行内存回收。

ParNew收集器

ParNew收集器是Serial收集器新生代的多线程实现,注意在进行垃圾回收的时候依然会stop the world,只是相比较Serial收集器而言它会运行多条进程进行垃圾回收。

ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百的保证能超越Serial收集器。当然,随着可以使用的CPU的数量增加,它对于GC时系统资源的利用还是很有好处的。它默认开启的收集线程数与CPU的数量相同,在CPU非常多(譬如32个,现在CPU动辄4核加超线程,服务器超过32个逻辑CPU的情况越来越多了)的环境下,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。

-UseParNewGC: 打开此开关后,使用ParNew + Serial Old的收集器组合进行内存回收,这样新生代使用并行收集器,老年代使用串行收集器。

Parallel Scavenge收集器

Parallel是采用复制算法的多线程新生代垃圾回收器,似乎和ParNew收集器有很多的相似的地方。但是Parallel Scanvenge收集器的一个特点是它所关注的目标是吞吐量(Throughput)。所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间 / (运行用户代码时间 + 垃圾收集时间)。停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能够提升用户的体验;而高吞吐量则可以最高效率地利用CPU时间,尽快地完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。

Parallel Old收集器

Parallel Old收集器是Parallel Scavenge收集器的老年代版本,采用多线程和”标记-整理”算法。这个收集器是在jdk1.6中才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于比较尴尬的状态。原因是如果新生代Parallel Scavenge收集器,那么老年代除了Serial Old(PS MarkSweep)收集器外别无选择。由于单线程的老年代Serial Old收集器在服务端应用性能上的”拖累“,即使使用了Parallel Scavenge收集器也未必能在整体应用上获得吞吐量最大化的效果,又因为老年代收集中无法充分利用服务器多CPU的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至还不一定有ParNew加CMS的组合”给力“。直到Parallel Old收集器出现后,”吞吐量优先“收集器终于有了比较名副其实的应用,在注重吞吐量及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。

-UseParallelGC: 虚拟机运行在Server模式下的默认值,打开此开关后,使用Parallel Scavenge + Serial Old的收集器组合进行内存回收。-UseParallelOldGC: 打开此开关后,使用Parallel Scavenge + Parallel Old的收集器组合进行垃圾回收

CMS收集器

CMS(Concurrent Mark Swep)收集器是一个比较重要的回收器,现在应用非常广泛,我们重点来看一下,CMS是一种获取最短回收停顿时间为目标的收集器,这使得它很适合用于和用户交互的业务。从名字(Mark Swep)就可以看出,CMS收集器是基于标记清除算法实现的。它的收集过程分为四个步骤:

  1. 初始标记(initial mark)
  2. 并发标记(concurrent mark)
  3. 重新标记(remark)
  4. 并发清除(concurrent sweep)

注意初始标记和重新标记还是会stop the world,但是在耗费时间更长的并发标记和并发清除两个阶段都可以和用户进程同时工作。

不过由于CMS收集器是基于标记清除算法实现的,会导致有大量的空间碎片产生,在为大对象分配内存的时候,往往会出现老年代还有很大的空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前开启一次Full GC。为了解决这个问题,CMS收集器默认提供了一个-XX:+UseCMSCompactAtFullCollection收集开关参数(默认就是开启的),用于在CMS收集器进行FullGC完开启内存碎片的合并整理过程,内存整理的过程是无法并发的,这样内存碎片问题倒是没有了,不过停顿时间不得不变长。虚拟机设计者还提供了另外一个参数-XX:CMSFullGCsBeforeCompaction参数用于设置执行多少次不压缩的FULL GC后跟着来一次带压缩的(默认值为0,表示每次进入Full GC时都进行碎片整理)。

不幸的是,它作为老年代的收集器,却无法与jdk1.4中已经存在的新生代收集器Parallel Scavenge配合工作,所以在jdk1.5中使用cms来收集老年代的时候,新生代只能选择ParNew或Serial收集器中的一个。ParNew收集器是使用-XX:+UseConcMarkSweepGC选项启用CMS收集器之后的默认新生代收集器,也可以使用-XX:+UseParNewGC选项来强制指定它。

由于CMS收集器现在比较常用,下面我们再额外了解一下CMS算法的几个常用参数:

  • UseCMSInitatingOccupancyOnly:表示只在到达阈值的时候,才进行 CMS 回收。
  • CMS默认启动的回收线程数目是(ParallelGCThreads+3)/4,如果你需要明确设定,可以通过-XX:+ParallelCMSThreads来设定,其中-XX:+ParallelGCThreads代表的年轻代的并发收集线程数目。
  • CMSClassUnloadingEnabled: 允许对元类数据进行回收。
  • CMSInitatingPermOccupancyFraction:当永久区占用率达到这一百分比后,启动 CMS 回收 (前提是-XX:+CMSClassUnloadingEnabled 激活了)。
  • CMSIncrementalMode:使用增量模式,比较适合单 CPU。
  • UseCMSCompactAtFullCollection参数可以使 CMS 在垃圾收集完成后,进行一次内存碎片整理。内存碎片的整理并不是并发进行的。
  • UseFullGCsBeforeCompaction:设定进行多少次 CMS 垃圾回收后,进行一次内存压缩。

一些建议

对于Native Memory:

  • 使用了NIO或者NIO框架(Mina/Netty)
  • 使用了DirectByteBuffer分配字节缓冲区
  • 使用了MappedByteBuffer做内存映射
  • 由于Native Memory只能通过FullGC回收,所以除非你非常清楚这时真的有必要,否则不要轻易调用System.gc()。

另外为了防止某些框架中的System.gc调用(例如NIO框架、Java RMI),建议在启动参数中加上-XX:+DisableExplicitGC来禁用显式GC。这个参数有个巨大的坑,如果你禁用了System.gc(),那么上面的3种场景下的内存就无法回收,可能造成OOM,如果你使用了CMS GC,那么可以用这个参数替代:-XX:+ExplicitGCInvokesConcurrent。

此外除了CMS的GC,其实其他针对old gen的回收器都会在对old gen回收的同时回收young gen。

G1收集器

G1收集器是一款面向服务端应用的垃圾收集器。HotSpot团队赋予它的使命是在未来替换掉JDK1.5中发布的CMS收集器。与其他GC收集器相比,G1具备如下特点:

  • 并行与并发:G1能更充分的利用CPU,多核环境下的硬件优势来缩短stop the world的停顿时间。
  • 分代收集:和其他收集器一样,分代的概念在G1中依然存在,不过G1不需要其他的垃圾回收器的配合就可以独自管理整个GC堆。
  • 空间整合:G1收集器有利于程序长时间运行,分配大对象时不会无法得到连续的空间而提前触发一次GC。
    可预测的非停顿:这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒。
  • 在使用G1收集器时,Java堆的内存布局和其他收集器有很大的差别,它将这个Java堆分为多个大小相等的独立区域,虽然还保留新生代和老年代的概念,但是新生代和老年代不再是物理隔离的了,它们都是一部分Region(不需要连续)的集合。

虽然G1看起来有很多优点,实际上CMS还是主流。

与GC相关的常用参数

除了上面提及的一些参数,下面补充一些和GC相关的常用参数:

    • Xmx: 设置堆内存的最大值。
    • Xms: 设置堆内存的初始值。
    • Xmn: 设置新生代的大小。
    • Xss: 设置栈的大小。
    • PretenureSizeThreshold: 直接晋升到老年代的对象大小,设置这个参数后,大于这个参数的对象将直接在老年代分配。
    • MaxTenuringThrehold: 晋升到老年代的对象年龄。每个对象在坚持过一次Minor GC之后,年龄就会加1,当超过这个参数值时就进入老年代。
    • UseAdaptiveSizePolicy: 在这种模式下,新生代的大小、eden 和 survivor 的比例、晋升老年代的对象年龄等参数会被自动调整,以达到在堆大小、吞吐量和停顿时间之间的平衡点。在手工调优比较困难的场合,可以直接使用这种自适应的方式,仅指定虚拟机的最大堆、目标的吞吐量 (GCTimeRatio) 和停顿时间 (MaxGCPauseMills),让虚拟机自己完成调优工作。
    • SurvivorRattio: 新生代Eden区域与Survivor区域的容量比值,默认为8,代表Eden: Suvivor= 8: 1。
    • XX:ParallelGCThreads:设置用于垃圾回收的线程数。通常情况下可以和 CPU 数量相等。但在 CPU 数量比较多的情况下,设置相对较小的数值也是合理的。
    • XX:MaxGCPauseMills:设置最大垃圾收集停顿时间。它的值是一个大于 0 的整数。收集器在工作时,会调整 Java 堆大小或者其他一些参数,尽可能地把停顿时间控制在 MaxGCPauseMills 以内。
    • XX:GCTimeRatio:设置吞吐量大小,它的值是一个 0-100 之间的整数。假设 GCTimeRatio 的值为 n,那么系统将花费不超过 1/(1+n) 的时间用于垃圾收集。
    • NewRatio: 设置新生代(包括Eden和两个Survivor区)与老年代的比值(除去持久代),设置为3,则新生代与老年代所占比值为1:3,新生代占整个堆栈的1/4。

参考资料

JVM垃圾回收算法及回收器详解:https://www.ziwenxie.site/2017/07/24/java-jvm-gc/

周志明:《深入理解Java虚拟机:JVM高级特性与最佳实践》

JVM垃圾回收算法及回收器详解的更多相关文章

  1. JVM 垃圾回收算法和垃圾回收器

    JVM 垃圾回收算法和垃圾回收器. 一.垃圾回收的区域 栈:栈中的生命周期是跟随线程,所以一般不需要关注. 堆:堆中的对象是垃圾回收的重点. 方法区:这一块也会发生垃圾回收,不过这块的效率比较低,一般 ...

  2. JVM垃圾回收算法(最全)

    JVM垃圾回收算法(最全) 下面是JVM虚拟机运行时的内存模型: 1.方法区 Perm(永久代.非堆) 2.虚拟机栈 3.本地方法栈 (Native方法) 4.堆 5.程序计数器 1 首先的问题是:j ...

  3. JVM垃圾回收算法解析

    JVM垃圾回收算法解析 标记-清除算法 该算法为最基础的算法.它分为标记和清除两个阶段,首先标记出需要回收的对象,在标记结束后,统一回收.该算法存在两个问题:一是效率问题,标记和清除过程效率都不太高, ...

  4. JVM垃圾回收算法详解

    前言 在JVM内存模型中会将堆内存划分新生代.老年代两个区域,两块区域的主要区别在于新生代存放存活时间较短的对象,老年代存放存活时间较久的对象,除了存活时间不同外,还有垃圾回收策略的不同,在JVM中中 ...

  5. java架构之路-(12)JVM垃圾回收算法和垃圾回收器

    接上次JVM虚拟机堆内存模型来继续说,上次我们主要说了什么时候可能把对象直接放在老年代,还有我们的可能性分析,提出GCroot根的概念.这次我们主要来说说垃圾回收所使用的的算法和我们的垃圾回收器,需要 ...

  6. Java基础:JVM垃圾回收算法

    众所周知,Java的垃圾回收是不需要程序员去手动操控的,而是由JVM去完成.本文介绍JVM进行垃圾回收的各种算法. 1. 如何确定某个对象是垃圾 1.1. 引用计数法 1.2. 可达性分析 2. 典型 ...

  7. 第四章 JVM垃圾回收算法

    说明:在阅读本篇之前,需要知道怎么判断对象的存活与否,见<第三章 JVM内存回收区域+对象存活的判断+引用类型+垃圾回收线程> 注意:本文主要参考自<分布式Java应用:基础与实践& ...

  8. 记录JVM垃圾回收算法

    垃圾回收算法可以分为三类,都基于标记-清除(复制)算法: Serial算法(单线程) 并行算法 并发算法 JVM会根据机器的硬件配置对每个内存代选择适合的回收算法,比如,如果机器多于1个核,会对年轻代 ...

  9. JVM 垃圾回收算法

    在说垃圾回收算法之前,先谈谈JVM怎样确定哪些对象是“垃圾”. 1.引用计数器算法: 引用计数器算法是给每个对象设置一个计数器,当有地方引用这个对象的时候,计数器+1,当引用失效的时候,计数器-1,当 ...

随机推荐

  1. spring加载bean报错:expected at least 1 bean which qualifies as autowire candidate. Dependency annotations: {}

    看具体报错日志: 警告: Unable to proxy interface-implementing method [public final void cn.wlf.selection.proto ...

  2. 解决asp.net上传文件时文件太大导致的错误

    即使在web.config中添加了节点和设置依然是不行的,还是报文件太大的错误, <httpModules>       <add name="UploadHttpModu ...

  3. string源码分析 ——转载 http://blogs.360.cn/360cloud/2012/11/26/linux-gcc-stl-string-in-depth/

    1. 问题提出 最近在我们的项目当中,出现了两次与使用string相关的问题. 1.1. 问题1:新代码引入的Bug 前一段时间有一个老项目来一个新需求,我们新增了一些代码逻辑来处理这个新需求.测试阶 ...

  4. 用js实现屏蔽F12、鼠标右击、鼠标左击

    function window.onhelp(){return false} //屏蔽F1帮助 document.onkeydown = function(){ if(window.event &am ...

  5. GOF23设计模式之组合模式(composite)

    一.组合模式概述 将对象组合成树状结构以表示“部分和整体”层次结构,使得客户可以统一的调用叶子对象和容器对象. (1)组合模式的使用场景   把部分和整体的关系用树形结构来表示,从而使客户端可以使用统 ...

  6. c++ 搜索二叉树 插入,删除,遍历操作

    搜索二叉树是一种具有良好排序和查找性能的二叉树数据结构,包括多种操作,本篇只介绍插入,排序(遍历),和删除操作,重点是删除操作比较复杂,用到的例子也是本人亲自画的 用到的测试图数据例子 第一.构建节点 ...

  7. Centos 6.5 下安装 Zabbix server 3.0服务器的安装及 监控主机的加入(2)

    一.Centos 6.5 下的Zabbix Server安装 上篇文章记录的是centos 7 下安装zabbix ,很简单.但是6.5上面没有可用的源直接安装zabbix,所以需要从别处下载.感谢i ...

  8. 原生JS模拟jQuery $

    模拟jQuery的$选择器 在获取元素的时候使用ID选择器,返回的是一个对象:使用类选择器或者标签选择器返回可能是一组元素:将获取到的一个或一组元素进行一个简易的封装封装成一个TQObject 什么是 ...

  9. 用PyMOL展示配体和受体相互作用的原子和氢键

    转载于 https://mp.weixin.qq.com/s/P62sjqhSTxmWVicrEAk-RQ 为了简化展示过程,我们设计了一个pml脚本 (脚本内有很详细的解释),只需要修改脚本里面受体 ...

  10. C#Remoting

    C# Remoting   细细品味C#——.Net Remoting专题 http://www.cnblogs.com/xia520pi/archive/2011/11/02/2233371.htm ...