Druid.io系列(一):简介
原文链接: https://blog.csdn.net/njpjsoftdev/article/details/52955676
Druid.io(以下简称Druid)是面向海量数据的、用于实时查询与分析的OLAP存储系统。Druid的四大关键特性总结如下:
亚秒级的OLAP查询分析。Druid采用了列式存储、倒排索引、位图索引等关键技术,能够在亚秒级别内完成海量数据的过滤、聚合以及多维分析等操作。
实时流数据分析。区别于传统分析型数据库采用的批量导入数据进行分析的方式,Druid提供了实时流数据分析,采用LSM(Long structure merge)-Tree结构使Druid拥有极高的实时写入性能;同时实现了实时数据在亚秒级内的可视化。
丰富的数据分析功能。针对不同用户群体,Druid提供了友好的可视化界面、类SQL查询语言以及REST 查询接口。
高可用性与高可拓展性。Druid采用分布式、SN(share-nothing)架构,管理类节点可配置HA,工作节点功能单一,不相互依赖,这些特性都使得Druid集群在管理、容错、灾备、扩容等方面变得十分简单。
1 为什么会有Druid
大数据技术从最早的Hadoop项目开始已经有十多年的历史了,而Druid是在2013年年底才开源的,虽然目前还不是Apache顶级项目,但是作为后起之秀,依然吸引了大量用户的目光,社区也非常活跃。那么,为什么会有Druid,而Druid又解决了传统大数据处理框架下的哪些“痛点”问题,下面我们来一一解答。
大数据时代,如何从海量数据中提取有价值的信息,是一个亟待解决的难题。针对这个问题,IT巨头们已经开发了大量的数据存储与分析类产品,比如IBM Netezza、HP Vertica、EMC GreenPlum等,但是他们大多是昂贵的商业付费类产品,业内使用者寥寥。
而受益于近年来高涨的开源精神,业内出现了众多优秀的开源项目,其中最有名的当属Apache Hadoop生态圈。时至今日,Hadoop已经成为了大数据的“标准”解决方案,但是,人们在享受Hadoop便捷数据分析的同时,也必须要忍受Hadoop在设计上的许多“痛点”,下面就罗列三方面的问题:
何时能进行数据查询?对于Hadoop使用的Map/Reduce批处理框架,数据何时能够查询没有性能保证。
随机IO问题。Map/Reduce批处理框架所处理的数据需要存储在HDFS上,而HDFS是一个以集群硬盘作为存储资源池的分布式文件系统,那么在海量数据的处理过程中,必然会引起大量的读写操作,此时随机IO就成为了高并发场景下的性能瓶颈。
数据可视化问题。HDFS是一个优秀的分布式文件系统,但是对于数据分析以及数据的即席查询,HDFS并不是最优的选择。
传统的大数据处理架构Hadoop更倾向于一种“后台批处理的数据仓库系统”,其作为海量历史数据保存、冷数据分析,确实是一个优秀的通用解决方案,但是如何保证高并发环境下海量数据的查询分析性能,以及如何实现海量实时数据的查询分析与可视化,Hadoop确实显得有些无能为力。
2 Druid直面痛点
Druid的母公司MetaMarket在2011年以前也是Hadoop的拥趸者,但是在高并发环境下,Hadoop并不能对数据可用性以及查询性能给出产品级别的保证,使得MetaMarket必须去寻找新的解决方案,当尝试使用了各种关系型数据库以及NoSQL产品后,他们觉得这些已有的工具都不能解决他们的“痛点”,所以决定在2011年开始研发自己的“轮子”Druid,他们将Druid定义为“开源、分布式、面向列式存储的实时分析数据存储系统”,所要解决的“痛点”也是上文中反复提及的“在高并发环境下,保证海量数据查询分析性能,同时又提供海量实时数据的查询、分析与可视化功能”。
Druid.io系列(一):简介的更多相关文章
- Druid.io系列(九):数据摄入
1. 概述 Druid的数据摄入主要包括两大类: 1. 实时输入摄入:包括Pull,Push两种 - Pull:需要启动一个RealtimeNode节点,通过不同的Firehose摄取不同种类的数据源 ...
- Druid.io系列(五):查询过程
原文链接: https://blog.csdn.net/njpjsoftdev/article/details/52956194 Druid使用JSON over HTTP 作为底层的查询语言,不过强 ...
- druid.io使用技术简介: Hyperloglog
druid.io 使用Hyperloglog 估计基数 参照如下连接 http://blog.codinglabs.org/articles/algorithms-for-cardinality-es ...
- Druid.io系列(八):部署
介绍 前面几个章节对Druid的整体架构做了简单的说明,本文主要描述如何部署Druid的环境 Imply提供了一套完整的部署方式,包括依赖库,Druid,图形化的数据展示页面,SQL查询组件等.本文将 ...
- Druid.io系列(七):架构剖析
1. 前言 Druid 的目标是提供一个能够在大数据集上做实时数据摄入与查询的平台,然而对于大多数系统而言,提供数据的快速摄入与提供快速查询是难以同时实现的两个指标.例如对于普通的RDBMS,如果想要 ...
- Druid.io系列(三): Druid集群节点
原文链接: https://blog.csdn.net/njpjsoftdev/article/details/52955937 1 Historical Node Historical Node的职 ...
- Druid.io系列(二):基本概念与架构
原文链接: https://blog.csdn.net/njpjsoftdev/article/details/52955788 在介绍Druid架构之前,我们先结合有关OLAP的基本原理来理解Dr ...
- Druid.io系列(六):问题总结
原文地址: https://blog.csdn.net/njpjsoftdev/article/details/52956508 我们在生产环境中使用Druid也遇到了很多问题,通过阅读官网文档.源码 ...
- Druid.io系列(四):索引过程分析
原文链接: https://blog.csdn.net/njpjsoftdev/article/details/52956083 Druid底层不保存原始数据,而是借鉴了Apache Lucene.A ...
随机推荐
- PostgreSQL 系统参数调整及并行设置(转)
转自:https://yq.aliyun.com/teams/5 OS 准备 # yum -y install coreutils glib2 lrzsz sysstat e4fsprogs xfsp ...
- Memcached 补充
Memcached 补充 Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站 ...
- TOF 初探
TOF 简介 TOF是Time of flight的简写,直译为飞行时间的意思.所谓飞行时间法3D成像,是通过给目标连续发送光脉冲,然后用传感器接收从物体返回的光,通过探测光脉冲的飞行(往返)时间来得 ...
- huawei机试题目
1/*输入一个字符串,输出这个字符串中单词的字典排序*/ bool cmp(char* a,char* b){ ? true:false; } void sortWord(char* str) { v ...
- [转]:What happens to older developers?
原文链接可能失效. This post is old but will remain on the front page for the time being. 140313. Jeff Jenkin ...
- Java并发--进程与线程由来
下面是本文的目录大纲: 一.操作系统中为什么会出现进程? 二.为什么会出现线程? 三.多线程并发 一.操作系统中为什么会出现进程? 说起进程的由来,我们需要从操作系统的发展历史谈起. 也许在今天,我们 ...
- WPF 使用 WindowChrome,在自定义窗口标题栏的同时最大程度保留原生窗口样式(类似 UWP/Chrome)
WPF 自定义窗口样式有多种方式,不过基本核心实现都是在修改 Win32 窗口样式.然而,Windows 上的应用就应该有 Windows 应用的样子嘛,在保证自定义的同时也能与其他窗口样式保持一致当 ...
- spring mvc框架web.xml配置
<?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi="http:// ...
- window10 下 php7.0 添加Sqlserver扩展
第一步.7.0.x 7.0.x的扩展下载地址: Microsoft Drivers for PHP for SQL Server https://www.microsoft.com/en-us/do ...
- drone 学习四 几个有用的命令
1. 安装cli 工具 linux curl -L https://github.com/drone/drone-cli/releases/download/v0.8.5/drone_linux_am ...