Description

osu 是一款群众喜闻乐见的休闲软件。 
我们可以把osu的规则简化与改编成以下的样子: 
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释) 
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。 

Input

第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。 

Output

只有一个实数,表示答案。答案四舍五入后保留1位小数。 

Sample Input


0.5 
0.5 
0.5

Sample Output

6.0 

HINT

【样例说明】 
000分数为0,001分数为1,010分数为1,100分数为1,101分数为2,110分数为8,011分数为8,111分数为27,总和为48,期望为48/8=6.0 
N<=100000

思路:此类期望题都是单独算某一位的贡献,假设前一位的连续长度为g[i-1],那么很明显当前位的期望长度为 g[i]=(g[i-1]+1)*p[i];

则当前为的贡献是add=g[i]^3-g[i-1]^3=3*g[i]^2-3*g[i]+1。 这三部分分别算期望即可。

第一部分:3*g[i]^2,就是平方的期望(不仅仅是期望的平方那么简单),令期望的平方为数组g2,则3g2[i]=3*(g2[i-1]+2*g[i-1]+1)*p[i];

第二部分:-3*g[i],其期望=-3*(g[i-1]+1)*p[i]

第三部分:   1,其期望=p[i]

主要就是要注意期望的平方如何去算。

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
double p[maxn],g[maxn],g2[maxn],ans;
int main()
{
int N,i;
scanf("%d",&N);
for(i=;i<=N;i++) scanf("%lf",&p[i]);
for(i=;i<=N;i++){
g[i]=(g[i-]+)*p[i];
g2[i]=(g2[i-]+*g[i-]+)*p[i];
ans+=*g2[i]-*g[i]+p[i];
}
printf("%.1lf\n",ans);
return ;
}

BZOJ - 4318: OSU! (期望DP&Attention)的更多相关文章

  1. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  2. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  3. BZOJ 4318 OSU! ——期望DP

    这次要求$x^3$的概率和. 直接维护三个值$x$ $x^2$ $x^3$的期望. 概率的平方不等于平方的概率. #include <map> #include <ctime> ...

  4. 【BZOJ】4318: OSU! 期望DP

    [题意]有一个长度为n的01序列,每一段极大的连续1的价值是L^3(长度L).现在给定n个实数表示该位为1的概率,求期望总价值.n<=10^5. [算法]期望DP [题解]后缀长度是一个很关键的 ...

  5. BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP

    这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...

  6. BZOJ 4318 OSU! (概率DP)

    题意 中文题面,难得解释了 题目传送门 分析 考虑到概率DPDPDP,显然可以想到f(i,j)f(i,j)f(i,j)表示到第iii位末尾有jjj个111的期望值.最后输出f(n+1,0)f(n+1, ...

  7. ●BZOJ 4318 OSU!

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4318题解: 期望dp 如果我们能够得到以每个位置结尾形成的连续1的长度的相关期望,那么问题就 ...

  8. 【BZOJ4318】OSU! 期望DP

    [BZOJ4318]OSU! Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1 ...

  9. bzoj 4318 OSU!

    期望dp. 考虑问题的简化版:一个数列有n个数,每位有pi的概率为1,否则为0.求以每一位结尾的全为1的后缀长度的期望. 递推就好了. l1[i]=(l1[i-1]+1)*p[i]+0*(1-p[i] ...

随机推荐

  1. RocketMQ 自己的整理和理解

    每个人的想法不同, RocketMQ 介绍的时候就说 是阿里从他们使用的上 解耦出来 近一步简化 便捷的 目的当然是 让其能快速入手和开发 如果不是在项目设计层面上 只是使用的话 从Git上下载该项目 ...

  2. python 这个stdin怎么写

    !/usr/bin/env python -- coding: utf-8 -- import json import pprint import sys reload(sys) sys.setdef ...

  3. 锁(1)-- java锁

    前言: 锁分3种:java锁.分布式锁.DB锁 在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类.介绍的内容如下: 公平锁/非公平锁 可重入锁 独享锁/共享锁 互斥锁 ...

  4. Dive into Spring framework -- 了解基本原理(二)--设计模式-part2

    Template模式 Template模式顾名思义是提供了一种模板,也就是针对某种业务提供了模范框架.这个在spring中是属于核心模式的,因为其ApplicationContext抽象类就是模板模式 ...

  5. nodejs 备忘

    引入模块(在于你用什么模块,需要的模块可以用终端进行安装, npm,一般express,swig,body-parser,cookies,markdown) 设置模块 设置渲染 var express ...

  6. Java网络编程学习A轮_02_抓包分析TCP三次握手过程

    参考资料: https://huoding.com/2013/11/21/299 https://hpbn.co/building-blocks-of-tcp/#three-way-handshake ...

  7. exit()子程序终止函数与return()函数的差别

    在main函数中我们通常使用return (0);这样的方式返回一个值. 但这是限定在非void情况下的也就是void main()这样的形式. exit()通常是用在子程序中用来终结程序用的,使用后 ...

  8. 如何高效的使用 Git

    -- 代码昨天还是运行好好的今天就不行了. 代码被删了. 突然出现了一个奇怪的 bug,但是没人知道怎么回事. 如果你出现过上面的任何一种情况,那本篇文章就是为你准备的. 除了知道 git add, ...

  9. JSP 调试

    要测试/调试一个JSP或servlet程序总是那么的难.JSP和Servlets程序趋向于牵涉到大量客户端/服务器之间的交互,这很有可能会产生错误,并且很难重现出错的环境. 接下来将会给出一些小技巧和 ...

  10. Chrome自动化搭建

    工具安装: 1.selenium-java-2.53.0-srcs.jar 2.selenium-java-2.53.0.jar 3.下载chromedriver.exe(下载地址:http://ch ...